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Preface

Working Group No.10 of the AGARD Fluid Dynamics Panel (FDP) was formed to investigate the limits of toundary layer
methods, both the integral and field type formulation, for the calculations of three-di ional turbulent separate flows.

Since the first meeting in late 1985 various difficulties arose with regard to technical and organizational problems and the
present report reflects this in some respect. However, it is hoped that the results presented give the reader sufficient inspiration
to appreciate the work performed by the various members of the Working Group and their co-workers.

The participants’ names are given below.

Le groupe de travail No.10 du Panel AGARD de 1a dynamique des fluides a été constitué pour exarniner les limitations des
méthodes de calcul appliquées a la couche limite, tant a formulation du type intégral que du type champ, pour le calcul des
écoulements turbulents décollés tridimensionnels.

Depuis la premiére réunion, organisée vers la fin de 'année 1985, un certain nombre de problemes d'ordre technique et
logistique se sont posés et le présent rapport en témoigne dans une certaine mesure. Cependant, il est a espérer que les résultats
qui y sont présentés permettront aux lecteurs de se rendre compte de 'amplitude des travaux entrepris par les différents
membres du groupe et leurs collaborateurs.

La liste des participants s'etablit comme suit:

J.Cousteix France

C.Gleyzes France

J.C.Le Balleur France

E.H.Hirschel Germany

H.-PKreplin Germany

H.U Meier Germany

F Menter Germany

H.W .Stock Germany

A.G.Panaras Greece

D.Papailiou Greece (FDP Member)

M.Onorato Italy (FDP Member)

B.van den Berg The Netherlands

JJ1.van den Berg The Netherlands

J.PF Lindhout The Netherlands

H.Norstrud Norway (FDP Member, Chairman)

A Pagano United Kingdom

P.D.Smith United Kingdom

T.Cebeci United States

L.Roberts United States

J.Steger United States

H.Yoshihara United States

D.A Humphreys Sweden Accession Por
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CHAPTER 1. BACKGROUND AND OVERVIEW

H.Yoshihara, Office of Naval Research, Liaison Office,
Far East, APO San Francisco 96503-0007

1. INTRODUCTION

Flow separation plays a dominant role in the high 1ift performance of combat
aircraft, invariably 1limiting takeoff and transonic maneuver performance. Such
separations arise in two forms. The first 1is in the form of free shear Jlayer
separations which for example arises in the well known fashion along highly swept,
sharp-nosed wings at large angles of attack. The second 1s the bubble-type separation
where the separated flow is confined within the separation bubble as in the case of
shock-induced separations on an unswept wing in the transonic regime. To treat such
viscous vortical flows, it fs essential that properly modeled viscous flow equations
be used, which for relevent cases will be turbulent.

With the recent availability of vector supercomputers with their large speeds
and memories, there has been {mpressive progress 1in computations using the
Reynolds-averaged Navier/Stokes equations. Despite use of sophisticated algorithms
programmed in effective vector formats, the computation costs have been so targe as to
preclude their use by the aerospace community. A vijable affordable alternative f1s
needed for design applications, and this is provided at large Reynolds numbers by the
boundary layer procedure, either in the differential (field) or integral formulations.

In the boundary layer method the problem is divided into two parts, the boundary
layer/wake and the equivalent inviscid flow. 1In the direct formulation the equivalent
inviscid flow problem is first solved assuming the viscous effects to be negligible.
The resultant surface pressure and flow direction distributions are then inputted into
the turbulent equations simplified by the boundary layer approximation., Calculation
of the boundary layer equations then yields the familiar displacement thickness or its
equivalent the surface transpiration velocity. Either of the latter is then inputted
into the equivalent inviscid flow to update the configuration tangency conditfon to
reflect the viscous displacement effects. The above cycle 1s then repeated until
convergence of the iterative cycle is achieved. In the absence of separation, the
above direct formulation was found to be convergent with the solution in most cases
comparing closely with experiments.

In the direct mode described above, the field equations are of mixed
parabolic/hyperbolic type, whereas the integral equations in most formulations are
fully hyperbolic. 1In the presence of flow separation, the above iterative procedure
in the direct mode ceased to converge when a marching direction, successful in the
direct mode, was used to solve the boundary layer problem. The primary cause of the
difficuity was an instability of the boundary layer procedure {in both the field and
integral methods) due to the finite difference marching nrot being in the proper
downwind direction. Moreover, 1in the field method a “saddle-point" type
i11-conditioning has been experienced for near-unswept separations.

Additionally, 1in the integral formulation, when the form factor H ("delta
star/theta”) assumed values in the range 2-3, a singularity arose due to the form
factor modeling, halting the marching. Since the form factor is in most cases less
than the “singular value" for free shear laye. separations, the above difficulty was
confined to the more severe bubble type separations, for example, arfsing in the
transonic case. It {is not clear whether & form factor relation, free of the
singularity, can be evolved using improved velocity profiles. For this purpose,
appropriate Navier/Stokes solutions should be examined for guidance.

To circumvent the problems described above for separated flows, the boundary
tayer problem, both 1in the field and integral forms, was posed in one of several
inverse forms where two of the boundary layer variables were used as inputs instead of
the surface pressure and flow direction. In cases where the inverse formulation
permitted 2 marching (cases not partially elliptic), a reorientation of the "downwind"
direction then permitted the use of the convenient marching used in the direct mode.
Additionally, the form factor singularity in the integral formulation was removed. A
difficulty that then arose with the 1inverse formulation was the loss of the
input/output compatibility between the boundary layer and equivalent 1inviscid flow
problems which then precluded the ctassical {iterative procedure of the direct mode.
In the inverse mode, the output from both problems was the surface pressure and flow
direction which in general would not bethe same. An update procedure was then required
to determine improved 1inputs to both problems as & function of the pressure/flow
direction mismatch. Simpl{fied local wupdate procedures successful 1fin the planar
problem (see for example LeBalleur, Ref. 1), were found to be inadequate in the 3D
cases when significant separation was present (Ref. 2).

The simplifications due to the boundary layer approximation are 1.
simplification and stiffness reduction of the equations, and 2. the decoupling of the
inviscid and viscid portions of the flow. The same simplifications can be achieved
without incurring the above update problem by patching the boundary layer flow to the
outer ftnviscid flow using a wmultidblock mesh, Here the multiblock mesh from the
NASA/Ames transonic N/S (TNS) code (Ref, 3) might be used in which the {nner blocks
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embed the configuration with its boundary layer and wake and the outer blocks contain
the taviscid portion of the flow. In the inner blocks the unsteady boundary layer
method developed by Van Dalsem and Steger (Ref. 4) would be used. An overlapping of
the mesh blocks then provides the framework to 1impose flow continuity. Another
similar approach of promise is the Fortified N/S method proposed by Van Dalsem and
Steger {(Ref. §). It avofds the difficultfes of the boundary layer approach by
overiapping the boundary layer and the outer flow and effecting the coupling through
the novel use of a source term.

In summary, the situation for computing separated boundary layer flows 1is as
follows: In the case of the field method, one must march 1n the proper downwind
direction at each level of the boundary layer. For large turning of the flow within
the boundary layer as would usually arise in separated flows, care must be exercised
in the choice of the proper finite difference marching direction, To ease this task,
Van Dalsem and Steger (Ref. 4) used the unsteady formulation, properly biasing the
transverse spatial differences. For the case of the integral method, there {is not
only a need to march in the proper downwind direction, but the form factor sfngularity
must be dispensed with, either by posing the problem in the inverse mode, or in & more
difficult fashfon, by employing a compatibility condition to neutralize the
singularity (Ref. 2). 1In the inverse mode, the difficulty then arises of a need of an
yet-to-be evolved update procedure to permit jterations between the boundary layer and
equivalent inviscid flows. The use of a flow patching with a multiblock mesh and the
use of the Fortified N/S method is then suggested as means to avoid this difficulty.

2. FLUID DYNAMICS PANEL WORKING GROUP 10

In view of the prospects of treating significant separated flows with greatly
reduced computing costs relative to the Navier/Stokes method, the AGARD Fluid Dynamics
Panel (FDP) established Working Group (WG) 10 "3D Viscous Flows-Boundary Layer Lim{t"
with the following Objective and Scope.

Objective

The primary objective 1s to develop procedures to calculate compressible
turbulent separated flows over lifting bodies and wings in the high Reynolds Number
limit to be carried out in two steps:

1. Develop techniques to solve the boundary layer equatfions for separated flows
prescribing appropriate direct or inverse input functions.

. Develop techniques to couple the resulting boundary layer problem with the
equivalent inviscid flow problem.

Scope

The WG will be confined to steady turbulent flows using both the field and
integral boundary layer equations. In the former, the emphasis will be on algebraic
turbulence models though differential equation models may also be considered, The
primary goal here will not be on the validation of the turbulence model, but on the
development of the mechanics of the boundary layer procedure and fts coupling with the
inviscid flow method.

Two test cases to be considered are the DFVLR 6:1 prolate spheroid and the
Lockheed/NASA-Ames Wing C Fighter Wing for whfich experimental data are available. The
Navier/Stokes solutions will also be used as a comparison data base.

There was great interest among the NATO member countries in the WG 10, but there
was 1nftial concern as to how to approach the tasks with the wide disparity in the
stage of development in the various countries. It was therefore agreed upon that the
W6 would function as a clinic whereby the rarticipants would exercise their methods at
their respective stages and share their experfences, particularly with respect to the
numerical difficulties encountered and their cures, This cooperative spirit would be
carried out, respecting the proprietary requisites of the participating groups.
Members of the WG 10 were as follows:

Mr. J. C, LeBalleur Dr. H, U. Meler Dr. P. D. Smith
ONERA-Chatiilon DFVYLR-Gottingen RAE-Farnborough
Dr. B. van den Berg Prof. H. Norstrud Dr. J. Steger
NLR-Amsterdam University of Trondheim NASA-Ames

Prof. T. Cebeci Prof. M. Onorato Dr., H. W, Stock
CSU-Long Beach Politecnico dt Torino Dornifer GmbH
Dr. C. Gleyzes Mr. A, Pagano Or. H. Yoshihara
ONERA-Cert British Aerospace-Filton Boeing Company
Prof. E. H. Hirschel Dr. A Panaras

MBB-Ottobrun Athens (NASA-Ames)

Mr. D. Humphreys Prof. L. Roberts

FFA-Stockholm Stanford Unfversity
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The first chairman of the WG was Dr. H. Yoshihara, who in turn was succeeded by Or. A,
Panaras and Prof. H. Norstrud. (This change in the chairmanship was necessitated by
the AGARD policy requiring the chairman to be a member of the Fluid Dynamics Panel.)
The term of the WG was from September 1985 to June 1988. WG meetings were held over
two days during the week preceding the FOP business meeting. Meeting were held as
follows: Fall 1985 (AGARD HQ, Paris); Spring 1986 (Politecnico di Torino, Torino};
Fall 1986 (Stanford University, Palo Alto); Spring 1987 (Lendon); Fall 1987 (Naples);
and Spring 1988 (Lisbon). Tasks were carried out by the following Committees:

1. Data Base: Chairman, Dr. B. van den Berg

a. 6:1 Prolate Spheroid, Dr. H. U, Meier

b, Wing C, Dr. A, Panaras

¢. Navier/Stokes So utfons, Dr. J. Steger
Integral Methods: Chairman, Dr, P. D. Smith
Field Methods: Chairman, Dr., T, Cebeci

Inviscid/Viscid Interaction: Chairman, Mr. J. C. Le Balleur

©n A ow N

Coordination with Eurovisc Committee and “Stanford II"
Committee (Prof. G. Lilley): Mr. D. Humphreys

The remainder of the report is organized as follows:

Chapter 2. Physical Aspects of 3D Separated Flows
Dr. B. van den Berg

Chapter 3. Theoretfcal Formulation
Mr. J. C. LeBalleur* and Prof, Or. E. H. Hirschel

Chapter 4. Numerical Procedures

a. Integral Methods
Dr. P. D. Smith*, Dr. C. Gleyzes, and Dr. H, Stock
b. Field Methods
Mr. D. Humphreys*, Dr. T, Cebeci, and Dr. B. van den Berg

Chapter 5. Data Base for Test Cases
a. Experimental Cases
Dr. H. U. Meier*, and Dr. H. Yoshihara
b. Navier/Stokes Calculations
Dr. J. Steger*, and Dr. A, Panaras

Chapter 6. Summary of Results and Computational Guidelines
Dr. L. Roberts*, and Mr. D. Humphreys

a. Integral Methods
Dr. P. Smith*, Mr. J. C. LeBalleur, Dr. C. Gleyzes, and
Dr. H. Stock

b. Fieid Methods
Dr, T. Cebeci*, Dr. B. van den Berg, Prof, Dr., E. H.
Hirschel, Mr., D. Humphreys, and Dr. F. Menter

Chapter 7. Conclusions.
Prof. Or. H. Norstrud*, and Dr. H. Yoshihara

The asterisks denote the principal authors.
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CHAPTER 2
PHYSICAL ASPECTS OF 3D SEPARATED BOUNDARY LAYER FLOWS

B.van den Berg, National Aerospace Laboratory, NLR,
Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands

In this chapter two subjects will be discussed more specifically. In the first place a description
will be given of 3D separated flow patterns in general. This means that attention will be focussed on the
topological features of the flow. It 1s important to understand these features for the calculation process
to be followed and for the interpretation of the results. As practical flows are generally turbulent and an
exact description of turbulence is far beyond reach at this wowent, an approximate mathematical model for
the turbulence terms in the equations has to be employed in calculstions. These empirical models are at
least partly based on general physical notions and they are the second subject to be discussed in this
chapter.

When referring to calculations, field methods for the viscous flow have been assumed here, as they
relate more simply to the physics. Integral methods, which solve the boundary layer equations in a global
way, actually do a comparable job, but the turbulence model is hidden in global empirical assumptions. Also
the discussion on the topology of 3D separated flows 1is not basically different for integral methods,
including the properties near separation (Cousteix & Houdeville 1981).

2.1  Topological features of separated flows

It may be useful to start recapitulating shortly the features of separation in 2D stationary flows.
Separation is then simply identified with a line with skin friction T, * 0, indicating the beginning of a
reverse flow region, which 1s inaccessible for fluid from upstream, Further features are that the boundary
layer thickness grows generally rapidly at and downstream of the separation line and that the interaction
between the viscous and inviscid flow becomes large. It 1is well known that solutions of thT/%aminar
boundary layer equations with pressure distribution prescribed produce a singularity, t ~ x , near
separation, Similar behaviour may be expected for turbulent boundary layer calculations, dependent on the
turbulence model., However, regular solutions can be obtained when prescribing other boundary conditions
such as the boundary layer digplacement thickness variation (e.g. Catherall & Mangler 1966). These, as well
as full Navier-Stokes sclutions, indicate that the physical flow behaves regularly, ‘w ~ X, near
separation.

In 3D flows the skin friction t = 0 only at singular points and not generally along a line on the
surface. Close to such a point the skfh friction components T __ and t  in the orthogonal directions x and
y may be written in case of regular behaviour: T = a_ . § .yand T = a .X + a .y, retaining only
the lowest-order terms in the series expansion, Wich #¥ans thd¥ che disddsatof®vill bd7restricted here to
first~order singularities. Dependent on the sign and magnitude of the coefficienta a__ . a , a_, a_,
different types of singular points are obtained (e.g. Lighthill 1963). Figure 2.l gho¥s paf¥ernzxof He
skin friction linmes or wall streamiines near 6uch points for some typical cases. 1f J = a__.a -
a8, > 0 an infinite number of wall streamlines pass through the singular point. The singular %51n¥y!s
cKl1e¥*a node 1n this case. 1f A= a +a > 0 it 1s a node of attachment as sketched in figure 2.l.a.
When changing the direction of the*&rrows” of the wall streamlines in the sketch a node of separa-
tion, A < 0, 18 obtained. Clearly on an isola&ed three-dimensional body at least one pode of attachment and
one node of separatrion must be pregent, If A°/4 ~ J < 0 the wall streamlines approach the singular point
asymptotically in spirals. Such a node is called a focus, see figure 2.1.b. The presence of a focus of
separation genarally marke the development of a vortex in the flow. If J < 0 the wall streamlines, except
two, do not pass through the singular point. Such g point s caliey a saddle and If A < O it ig a saddle
point of separation as sketched in figure 2.1.c. Finally it seems useful to mention in this short survey a
well-known topological rule, which states that the number of nodal points (nodeg and foci) exceeds the
number of saddle points by two on bodies with no multiply connected surfaces (Lighthill 1963).

Nodes are efther sources or sinks of wall gtreamlines, as contrasted with saddles. The speclal
feature of a saddle is that it partitions the wall gtreamlines coming from both sides towards the saddle.
The *wo wall streamlines leaving the saddle act, at least locally, as a barrier between wall streamlines
coming from opposite directions. An exceptionally efficient barrier occurs in the degenerate case of a line
with saddle points of separation. Such a line corresponds to what is called a separation line in 2D flows.
Analogously one might call the wall streamlines leaving a saddle point separation lines $u 3D flowe. More
precigely Lighthill (1963) has proposed to define as separation lines wall streamlines, which igsue from a
saddle point of separation and disappear in a node of separation. It should be noted, however, that many of
the physical features attending 2D separation, as summarized earlier, do not apply here. The differences
will be discussed in some detail in the next paragraphs.

In the first place in 3D flows the skin friction is not zero except at the saddle point itself.
Further it is not generally true that the wall streamlines issuing from a saddle point act as a complete
barrier between flow from "upstream" and "downstream”, as a 2D separation line does. This is illustrated in
figure 2.2, which shows some simple wall flow patterns near one or two nodes and gaddles. It is evident
from figures 2.2.b and ¢ that the wall streamlines issuing from the saddle points and disappearing in the
foct, do not constitute a complete barriler. Actuslly the wall streamlines directed towards the saddle point
from downstream all originate upstream, which means that the whole surface is accessible from upstream.
Figure 2.2.a, showing the flow pattern for a saddle with a node downstream, provides an example where the
wall streumlines issuing from the saddle indeed conatitute a complete barrier. Even in this case, however,
this holds only for the wall stresmlines and not necessarily for any other streamline away from the wall,
since the external streamiine attaching to the downstream node normally does not orfiginate at the upstream
saddle, see figure 2.2.a. A closed regfon with geparated fluid, which s inaccessible for fluid from
upstream, as in 2D geparations, does not exist in the case shown. In general it may be stated that closed
separation regions probably are earlier an exception than the rule in 3D flows (Hunt et al, 1978), The fact
that 3D flow separations, due to the extra dimension, generally tend to be open separations, seems not to
be always eufficiently well appreciated.




In 2D flows, separation is accompanied with rapid boundary layer growth. Such a rapid growth does not
necessarily occur in 3D flows near wall streamlines issuing from saddle points of separation. To evaluate
the growth, the Eontlnuity equation for the flow near the surface will be considered. Assuming U ~ Tyt s
one obtains t .z .An = constant, where 2z is the wall distance and An 18 the distance between two
neighbouring wall streamlines. In 2D flows 4n = constant, but A 0 at sgeparation, so that the wall
distance z must grow very rapidly to satisfy continuity. In 3D flows the skin friction does not go to zero,
except at the singular points, and rapid boundary layer growth along special wall streamlines is not
evident. Rapid growth must come in that case from a fast decrease of 4n, 1.e. from a strong flow
convergence. Strong flow convergence does not always occur along wall streamlines issuing from saddle
points. On the other hand experimental evidence indicates that strong flow convergence may occur along wall
streamlines, which do not issue from a saddle point, and which do not distinguish themselves in any
fundamental aspect from other wall streamlines. Further downstream along such a wail streamline a very
thick boundary layer will have developed with many of the physical features that are generally associated
with separation. This has led Wang (1976) to call this an "open separation". The terminology is confusing,
however, since most 3D separations are open, as argued in the preceding paragraph. The important conclusion
is that separation-like flow features may start to develop along a wall streamline at a position, which is
not well defined and is not a singular point, while along wall streamlines 1issuing from a saddle point
separation-like features may not become very evident at all.

Since the boundary layer thickness increases rapidly at and downstream of a 2D separation line, the
viscous effect on the inviscid flow will be large. On the other hand small changes of the pressure gradient
imposed by the inviscid flow on the viscous flow may have large effects as the velocities in 2D separaticn
regions are small. This is a physical explanation for the strong viscous-inviscid interaction in these
conditions. Because rapid boundary layer growth does not always occur in 3D flows along the lines which may
be defined as separation lines, and because the velocities are not always small in 3D separation regions,
strong viscous-inviscid interaction does not necessarily occur here on physical grounds. A mathematical
reason for strong viscous-inviscid interaction may be singular behaviour of the solution near the
separation line, like in 2D flows when the boundary layer equations are solved with the pressure
distribution prescribed. The behaviour of the solution of the 3D boundary layer equations near special
lines like wall streamlines issuing from saddle points, has not been investigated thus far in detail for
the general case. For quasi-two-dimensional flows some conclusions can be drawn, however, from a simple
analysis to be discussed hereafter.

In the analysis laminar boundary layers will be assumed, but the results are likely to hold also for
turbulent flows as with the normal turbulence models the equations are similar to a fairly high order of
approximation close to the wall, which is the region of interest here. For quasi-two-dimensional laminar
boundary layers, as occur on infinite swept wings, the so-called independence principle holds (e.g.
Schlichting 1979). The independence principle states that the velocity component normal to the lines of
invariancy (e.g. the infinite swept wing leading edge) can be solved independently from the velocity
component parallel to these lines. This weans that that part of the solution is 1identical to the 2D
solution. It can be concluded, therefore that in that case withlﬁhe pressure distribution prescribed the
skin friction component normal to the separation line v ~ x near separation, as in 2D. The other
component Tt = constant. Ccnsequently the skin friction Of wall streamlines touch in cusp-like manner the
separation ﬂne. which is then an envelope of wall streamlines. The solution thus obtained is singular at
the separation line. Like in 2D flows, however, regular solutions may be obtained when employing more
appropriate solution techniques, applying other boundary conditions or solving the full Navier-Stokes
equations. In such calculations the skin friction near separation will vary as T ~ %0 T = constant,
which means that the separation line is an asymptote of wall streamlines. vy

The question, whether a 3D separation line, issuing from a saddle point and disappearing in a node,
is an envelope or an asymptote of wall streamlines, has received continual attention in the literature
(e.g. Maskell 1955, Lighthill 1963, Brown & Stewartson 1969, Wang 1976, Hornung & Perry 1984). If the
foregoing quasi-two-dimeiwsional analysis may be generalized, it is clear that a separation line is not an
envelope of wall streamlines, neither in physical reality nor in proper calculations. This conclusion
should not be surprising, since singularities, as occur at cusps, can not be expected to exist in reality.
The occurrence of cusps at separation in boundary layer calculations is due to improper boundary conditions
and may be dependent also on the marching direction. In fully 3D flows the wall streamlines probably do not
really approach the separation line asymptotically, but all touch the separation line at the downstream
node, where it terminates. Surface flow visualizations seem *o suggest that separation lines are envelopes
ot wall streamlines, but obviously rigorous conclusions can never be drawn from such obseirvatious.

It will be evident from the foregoing that the definition of the separation line in 3D flows poses
problems. An unambiguous definition is that of Lighthill: a separation line is a wall streamline igsuing
from a saddle point of separation and disappearing in a node of separation. Many of the physical flow
features associated with 2D separations may not occur along such wall streamlines, however. Also, as these
lines are no envelopes of wall streamlines, they may not be distinguishable from any other wall streamline
apart from their special origin. At the same time wall streamlines, which do not originate at a saddle
point, may show many of the physical features generally associated with separation. Since in practice one
normally wants to include the latter case in the separated flows, several other definitfons for a 3D
separation line have been considered, none of them satisfactory (see e.g. Wang 1976). Definitions based on
the breakdown of the boundary layer assumptions or rapid boundary layer growth ere inadequate as these do
no provide precise criteria. Whether singular solutions of the boundary layer equations occur along a
separation line depends on the solution technique. Inaccessibility for upstream fluid also does not lead to
a satisfactory discrimination as mostly the whole flow is accessible in the 3D case. It seems that the
separation line concept adopted from 2D flows is not simply transferable to 3D flows.

If the term separation 1s yet employed for 3D flows, ae 1s usual practice, it is profitable to
distinguishk two types of separation lines: wall streamlines 1ssuing from saddle points and lines of
convergence not involving singular points. There is considerable diversity in the terminology for the two
types of separation in the literature, e.g. bubble vs free-shear-layer separation (Maskell 1955), closed vs
open separation (Wang 1976), global vs local separatfon (Tobak & Peake 1982), while also the term cross-
flow separation 1is used for the latter type (Chapman 1986). Unfortunately all the terms proposed are
wisleading to some extent due to preconceived ideas about the flow physics, which do not always apply. In




fact the flow ‘- .res further downstream behind e.g. a saddle and a node (figure 2.2.a) may be
indistinguishable from those in tvo regions of flow convergence involving no singular points. Therefore, it
seems most rational to refar to both types of separation on the bisis of their elementary distinguishing
feature. This suggest the use of terms like saddle point separation and gradual separation respectively.
Since in the latter case no singular points are involved and the separation characteristics develop
gr2iually, the term separation ie inherently not precise here.

In this report two test cases for boundary layer calculations are considered. These include the 3D
turbulent boundary layer flow on an ellipsoid at 10° and at 30° angle of attack and a transonic swept wing
flow with a local separation. The flow separations on the ellipsoid at angle of attack are typical gradual
separacions involving no singular points. Though far downstream on the ellipsoid saddle point separations
may occur, the 3D separation 1in the region of intereat here, i.e, the region where boundary layer
calculations have been performed, is of the gradual type at both angles of attack (Meler et al 1983). On
the swept wing, however, the surface flow visualizations (Keener 1985) indicate the presence of a saddle
point separation. Actually a saddle and a focus are cle1fly recognizable on the wing upper surface at the
test case conditions (M_ = 0.85, a = 5°, Re = 6.8 x 10°). The separated wall streamline pattern is basi-
cally similar to that sketched in figure 2.2.b.

2.2 Turbulence modelling of separated flows

As a univergsal wodel for the turbulent shear stresees in the Reynolds-averaged flow equations does
not yet exist, and probably will never do, semi-empirical models have to be applied in calculation methods.
These semi-empirical models have generally a restricted range of applicability. This leads to turbulence
models valid for specific flow zones. In this sectfon turbulence models for separated flows will be
reviewed briefly. Actually the emphasis will be on the complexities and the consequent unsatisfactory state
of affairs in turbulence wodelling, notably for separated flows.

It may be useful to start again, as in section 2.1, with a discussion of the situation for 2D
separated flows. When the boundary layer is not separated, the flow properties in the wall region determine
to a large extent the 2D turbulent boundary layer development. Since the flow in the wall region seems to
behave reasonably well universally (as appears from the wide validity of the law of the wall), simple
turbulence models describing at least the wall region correctly produce often satisfactory results. The
situation becomes different, however, when the flow separates from the wall. The boundary layer becowmes
then a free shear layer developing above a recirculation region in which the velocities are comparatively
small. As the stabliizing effect of the wall f{s absent, the turbulence level in the free shear layer tends
to {increase substantially. When the separated flow reattaches, the free shear layer is splitted {nto two
parts, one part flowing backwards into the recirculation regfon. This will affect especially the
development of the large turbulent eddies. Clearly substantial changes in turbulence level and structure
occur in case of a 2D separation (and reattachment). As these changes take place generally comparatively
fast, turbulence history effects may be expected to play an important role. In addition, 2D separated flows
are often unsteady and the low frequency fluctuations, which probably do not depend on local conditions
only, way affect the turbulence structure and can produce a non-negligible direct contribution to the
turbulent shear stresses (e.y. Bradshaw 1978). It will be clear that complex turbulence models are needed
to describe the phenomena in such flows more or less satisfactory. Actually the accuracy of the turbulence
models available up to now for 2D separation regions is inadequate (e.g. Kline et al 1983, Delery & Marvin
1986) .

As argued in section 2.1, the physical features attending a 3D separation do not necessarily resemble
very closely those of a 2D separation. For instance, if there 1s a recirculatfon region downstream of a 3D
separation line, the velocities need not to be small in that region as there may be a significant velocity
component parallel to the separation line. Moreover, often 3D separations do not feature a distinct
recirculation region, the separation region being open. It {s also not possible generally to distinguish
downatream of a 3D separation line clearly a shear layer away from the wall, as in 2D separations. Actually
the flow near and downstream of a 3D separation line may not be very different from a normal attached 3D
boundsry layer flow. It will be evident from the foregoing that the substantial changes in turbulence level
and structure attending 2D separations, do not necessarily occur in the same way in 3D separations. On the
other hand the flow is generally strongly three-dimensional near 3D separations and the usual problems
associated with turbulence modelling for 3D boundary layers apply here consequently.

It 18 generally accepted now that simple scalar eddy viscosity turbulence models are ilnadequate for
3D boundary layers as a considerable eddy viscosity non-isotropy appears to exist. Some experimental values
of the ratio of the crossvise to the streamwise eddy viscosity N_ {n three-dimensional boundary layers are
collected in figure 2.3. The plot includes the recent experimerital data from Anderson and Eaton (1987),
which sgain ghow that the ratio N may attain values substantially leas than one. Though the non-isotropy
of the eddy viscosity has attracteéd most attention, the comparatively low magnitude of the eddy viscosity
in 3D boundary layers according to experiments is at least as important to take into account for accurate
turbulence modelling. Figure 2.4 shows the considerable decrease of the eddy viscosity magnitude measured
in a boundary layer developing from a 2D condition to a 3D separation (Elgenaar & Boelsma 1974).

In general experiments indicate that the turbulence level decreases when the flow becomes three-
dimensional. Varfous explanations have put forward. It has been propesed that due to the flow three-
dimensionality the large turbulent eddies are hindered in their development as they will topple and that
consequently turbulence activity decreases (Bradshaw & Pontikos 1985). Further, history effects wmay be
expected to be responsible for at least part of the effects found (Van den Berg 1982). Three-dimensional
boundary layers involve generally also flow convergence or divergence, which are known to lead to & sub-
stantial turbulence level decrease or increase respectively (e.g. Patel & Baek 1987). Due to the extra
dimension, additional phenomens which affect the turbulence properties occur in 3D flows ard complicate
accurate turbulence modelling.

It may be concluded that turbulence modelling fn 3D separation regions poses different, though not
necessarily more difficult problems than in 2D separation regions. In both cases the problems are tar from
solved, however, and ft looks like that {n the not too distant future the probably still existing
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shortcomings of the turbulence models will be the principal factor limiting the accuracy of boundary layer
calculations, notably in separation regions.
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CHAPTER 3. THEORETICAL FORMULATION

E.H.Hirschel, MBB Flugzeuge-LKE 122,
Postfach 801160, 8000 Miinchen 80, Federal Republic of Germany

The Navier~Stokes equations are believed to describe any phenomenon of continuum
flow, even turbulence. Discrete numerical solutions of the Navier-Stokes equations are
available today, but, except for some special cases, actually the Reynolds-averaged
equations are solved for non-laminar flow. The special cases concern large-eddy or
direct simulation of turbulent flow, which is possible on a research level now {see for
instance Ref. 1).

Although the computer power has grown dramatically in the last decade, solutions
of the Reynolds-averaged Navier-Stokes equations are much too expensive to be applied
in regular aerodynamic design work, Ref. 2. 1In addition there are still many not suf-
ficiently solved problems with discrete numerical methods, and the big question marks
which have to be put to our abilities to model transition laminar-turbulent and tur~-
bulence in separating shear flows.

The aerodynamic design engineer traditionally employs a whole palette of flow
models and computation methods in his work. Depending on the given design problem he
distinguishes:

- inviscid flow,

- inviscid flow with weak interacting viscous effects,

- inviscid flow with strong interacting viscou: effects,
- fully viscous flow,

which usually appear, although in different areas, and with different importance, on
every aircraft.

Another way to classify flow fields is by distinguishing
- attached flow,
~ separated flow.

There is a problem with the concept of separation, because as it usually is used
it stems from two-dimensional flows, where it simply is defined by vanishing surface
shear. Actually a more general view should be adopted, Refs. 3 and 4. Whether the
boundary layer leaves a sharp edge (flow-off separation at the trailing edge of a wing,
or at the leading edge of a delta wing at larger angle of attack}, or gets separated
at the body surface (free-surface or squeeze-off separation, the latter especially in
three~dimensional flow situations), in each case the following effects appear:

~ strong interaction of the separating boundary layer with the inviscid flow,
which leads to a viscosity induced pressure drag,

- convective transport of vorticity away from the body surface in wakes (vortex
sheets) and vortices (the induced drag of a finite-span lifting wing is re-
lated to this phenomenon).

If one accepts this more general view it becomes evident at once that separated
flow fields in some cases can be treated by means of purely inviscid models, like po-
tential flow models, see for instance Ref. 5, or by Euler models, Ref. 4, see also the
very important Ref. 6. The typical application considered in these references is that
to delta wings with sharp leading edges at angles of attack, where leading-edge separa=-
tion appears and hence lee-side vortices.

The scope of the present study is limited to free-surface or squeeze-off separa-
tion, where the location of separation is not fixed by sharp edges. The question is
whether and how far flow fields with such properties can be handled with some invisciad
flow - boundary-layer approach. The basic principle which allows such an approach is
the locality principle, Ref. 3.

Experimental and theoretical/numerical results from flowfield investigations on
many configurations suggest that a change in body shape or in the flow configuration,
for instance by separation, is felt only locally and downstream of that location. This
is the reason why in general a boundary-layer computation yields good results compared
to experimental results, although usually only inviscid solutions without modelling of
the separation phenomena are applied.

The fact that also the location of primary separation lines usually can be pre-
dicted to a good degree of accuracy is connected with this principle, The global inter-
action due to the separating boundary layer obviously is weak in most cases. The local
interaction, however, because of the elliptic properties of the flow near a separation
line or point, finally makes it impossible to predict exactly the location of separation
in the frame of boundary~layer theory.




The locality principle must be used with care. Of course, the flow is changed
upstream too, for instance because of the elliptic property of subsonic flow fields.
These changes are small as can be seen. They can be significant, if for instance
the wake of the body carries kinematically active vorticity. Then a global inter-
action can occur which may not be significant for the boundary-layer development,
but for the global forces on the body. An example for this is the induced drag of
wings.

The formulation of boundary-layer computation problems on arbitrary confi-
gurations poses no difficulties, Ref. 7. Of course, boundary-layer theory must be
valid. It is interesting to note that obviously first-order theory rather early
becomes incorrect if the flow is decelerated, even if the boundary-layer thickness,
and the longitudinal surface curvature is not large, Ref. 8. Second-order boundary-
layer methods, see for ingtance Ref. 9, allow to treat thick boundary-layers on curved
surfaces, where centrifugal pressure corrections must be made, and where the off-
surface metric must be taken into account. Of course, then the displacement proper-
ties of the boundary-layer must be imposed on the inviscid flow by means of the
equivalent inviscid source distribution (Ref. 7), whichis done routinely in zonal
solutions, Ref. 8. Even hypersonic boundary layers with entropy-layer swallowing
can be treated with second-order boundary-layer theory, Ref. 10.

The coupling of a boundary-layer solution with an inviscid solution in order to com-
pute the flow in a separation region or to obtain the global interaction, poses consider-
able problems. In two-dimensional flow cases inverse or interactive approaches are
often used. In general it is possible to extend these to three-dimensional flow cases
only if the features of the separated flow allow this. If the flow exhibits a comp-
licated separation topology, then the Reynolds-averaged Navier-Stokes equations have
to be employed globally or at least, like in the zonal solution of Ref. 8, locally.

The boundary-layer equations are of parabolic type, Ref. 3 (or in the integral
formulation of hyperbolic type), and pose an initial value/boundary-value problem. The
streamlines of the boundary layer are characteristics, and therefore the marching dir-
ection of the boundary-layer method, and hence the grid must be oriented more or less
in main stream direction., A complete orientation along the external inviscid stream-
lines (streamline coordinates) in general proves to be too complicated to handle, be-
cause the external inviscid streamlines converge or diverge in parts of a configuration.
Then streamlines have to be deleted or newly to be started (see for instance Ref, 11}.
A complete configuration orientation of the grid, like in the cross-section oriented
grids for fuselages or the percent-line oriented grids on wings, Refs. 7 and 12, also
can have drawbacks. Nose or attachment regions, also the regions ahead of primary
separation may pose problems with such grids. An interesting approach to combine
streamline oriented and configuration oriented grids in so-called hybrid grids was
made in Ref. 13. There selected inviscid streamlines form a skeleton in which then a
kind of skeleton cross-section grid is constructed. In this way the advantages of both
types are combined, while the disadvantages are mostly avoided.

The problem of initial data is closely connected with the grid-orientation problem.
Although one-dimensional initial data can be constructed in stagnation points or on
attachment lines in chord sections, Ref. 7, in the latter case in the infinite-swept wing
mode (or in the locally infinite-~swept wing mode, where the correct metric properties of
the wing are taken into account), the procedures are quite cumbersome. Usually therefore
approximate initial data are employed somewhat downstream of the actual stagnation point
or of the actual attachment line. This is possible, because the initial data very fast
loose their influence on the downstream solution in favour of the local boundary data
if the flow is sufficiently accelerated, Ref. 7., However, if approximate initial data
are put in regions of decelerated flow, large errors may build up in the complete down-
stream solution, unless there again the flow 1is accelerated, as for instance the flow
past automobiles behind the motor hood, Ref. 14,

REFERENCES

1. Schumann U., and Friedrich R. (eds.), Direct and Large-Eddy Simulation of Turbulence,
vol. 15 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig-Wiesbaden, 1986.

2. Hirschel E.H., Super Computers Today: Sufficient for Aircraft Design? Experiences
and Demands, In: Super Computer '88, H.W. Meuer (ed.), Carl Hanser, Miinchen-Wien,
1988, pp. 110-150.

3. Hirschel E.H., Evaluation of Results of Boundary-Layer Calculations with Regard to
Design Aerodynamics, In: Computation of Three-Dimensional Boundary Layers In-
cluding Separation, AGARD~R-741, 1986, pp. 5-1 to 5-29.

4. Eberle A., Rizzi A., and Hirschel E.H., Numerical Solutions of the Euler Equations
for Steady Flow Problems, Vol. 30 of Notes on Numerical Fluid Mechanics, Viewegq,
Braunschweig-Wiesbaden, 1990.

5. Hoeijmakers H.W.M., and Vaatstra W.,, Higher-Order Panel Method Applied to Vortex-
Sheet Roll-Up, AIAA J., Vol. 21, 1973, pp. 516-523.




10.

12,

13.

Elsenaar A., and Eriksson L.E. (eds.), International Vortex-Flow Experiment on Euler
Code Validation, FFA Bromma, 1987, ISBN 91-97 0914-0-5.

Hirschel E.H., and Kordulla W., Shear Flow in Surface-Oriented Coordinates, Vol. 4
of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig-Wiesbaden, 1981.

Wanie K.M., Schmatz M.A., and Monnoyer F., 3 Close Coupling Procedure for 2Zonal
Solutions of the Navier-Stokes, Euler and Boundary-Layer Equations, ZFwW, Vol. 11,
No. 6, 1987, pp. 347-359.

Monnoyer F., Calculation of Three-Dimensional Attached Viscous Flow on General Con-
figurations with Second-Order Boundary-Layer Theory, to appear in Zeitschrift fir
Flugwissenschaften (2FW), also MBB-S-PUB~345, 1988.

Monnoyer, F., Mundt, Ch., and Pfitzner M., Calculation of the Hypersonic Viscous
Flow Past Reentry Vehicles with an Euler/Boundary-Layer Coupling Method, AIAA-Paper
90-0417, 1990.

Geissler W., Calculation of the Three-Dimensional Laminar Boundary Layer Around
Bodies of Revolution at Incidence and With Separation, AGARD CP-168, 1975, pp. 33-1
to 33-11.

Hirschel E.H., Boundary-Layer Coordinates on General Wings and Fuselages, ZFW, Vol. 6,
No. 3, 1982, pp. 194-202.

Griin N., Hybrid Coordinates for 3-D Boundary-~Layer Calculations, in: Numerical Grid
Generation in Computational Fluid Mechanics '88, S. Sengupta, J. Hiuser, P.A. Eise-
mann, J.F. Thompson (eds.), Pineridge Press, Swansea, 1988, pp. 835-844.

Hirschel E.H., Bretthauer N., and Rdhe H., Theoretical and Experimental Boundary-
Layer Studies on Car Bodies, J. of the Int, Ass. for Vehicle Design, Vol. 5, No. 5,
1984, pp. 567-584.




CHAPTER 4. NUMERICAL PROCEDURES
4.1 Integral methods

P.D.Smith, AES Division, Royal Aerospace Establishment,
Farmborough, Hants GU14 6TD, United Kingdom

4.1.1 The integral equations

Iategral prediction methods for three-dimensional turbulent boundary layers are most readily des-
cribed in a streamline coordinate system (s,n) which consists of two families of mutually orthogonal
curves on the body surface. One family is formed by the projections, onto the surface, of streamlines
just external to the boundary layer. The direction(s) of an external streamline is called the streamwise
direction and boundary-layer flow in a direction (n) normal to an external streamline and parallel to the
surface is called crossflow., For general applicability the equations in the s, n streamline coordinate
system are transformed to a general non-orthogonal curvilinear coordinate system; x, y in the surface =z
normal to the surface with an angle A(x,y) between the x and y directions and an angle a(x,y)
between the x and s directions.

The integral equations in streamline coordinates are! s momentum integral:
C

2, 20, e 2-M , 2 - Ml au | o, £,
—————— — — — - —— — - - — 1
era T T s T AV U, LN L U, 3 %) * Ref22 7 ™
n momentum integral:
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Entrainment or continuity integral:
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Rere U, is the external velocity in the streamline direction, L denotes the Mach number corresponding

are the skin friction components in the streamwise and crosswise directions res-

to Ue s Cfs and Cfn
pectively. & is the boundary-layer thickness, CE the entrainment coefficient, H the ratio 6]/0”
and the integral thicknesses are defined as:
8 [ &
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and 921 = elz + 62 . In addition we define Hl = (§ - <‘S|)/0ll

The terms Ks and Kn are the geodesic curvatures of the curves s = constant (normals) and
n = constant (streamlines) respectively. General expressions for K‘ and L in terms of the angle a
and the geometry of the x,y coordinate system may be found in Reference 1. K, is a measure of the rate
of divergence of the external streamlines whilst if the 2z component of the vorticity of the external
flow is zero K = l/Ue (aue/an ) and some simplification of equations (1) to (3) results.

More general versions of equations (1) to (3) which make allowance for pressure gradients normal to
the surface and include terms resulting from the Reynolds normal stresses may be found in Referemces 2,
3 and 13.

4.1.2 particular methods of solution
The major differences between the integral calculation methods used by the members of the Working
Group occur in the assumptions made regarding the entrainment coefficient CE and the forms assumed for

the streamwise and crossflow velocity profiles. These profiles are needed in order to derive relation-
ships between the integral thicknesses (equation (4)) thus reducing the number of unknowns. The msjor
assumptions made are detailed below.
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4.1.2.1 RAE method®'3

The method is essentially that of Smith, Reference 4, but since extended to allow for history effects
upon the turbulence structure {(Reference 5) by calculating the entraimment coefficient by means of the lag
equation of Green, Weeks and Brooman (Reference 6) applied along the external streamlines. Power law velo-
city profiles are used in the streamwise direction and Mager (Reference 7) profiles in the crossflow direc-
tion. To improve the prediction of the streamwise flow the H, = H'(H) relationship used is not that

which would be given by the power law velocity profiles but instead the H = HI(H) relationship as given

by Lock's (Reference 8) equation (105) is used. This includes allowances for the effects of low Reynolds
number and of strong departures from equilibrium. In addition it is necessary to assume a skin friction

law for cfs and that of Green et al (Reference 6) is used. The dependent variables of the method are

= -
e‘l, H and B8 = tan (cfn/cfs) .
4.1.2.2 RAE method using Cross's? profiles
Here the simple but fairly restricted power law and Mager profiles of Smith's method are replaced by
the more satisfactory but complicated profiles suggested by Cross (Reference 9).
LU (z,U_,Re.) cos B + CF_(g,x.)
lJe w ot s gtbeXg)
(5)

= £,(5,U ,Re;) sin 8 + DF (g,x,)

m§|<

vhere [ = z/8 , U= /Ic_, Re, = Ueélv is the Reynolds number based on & , tan B = Cfnlcfs and fw
is the standard law of the wall

v
T
£, = TaT lln(L;UTRes) +2.13] . (6)

F(g,x) = sin’(4n0)

is a modification of the Coles wake function (and allows for strong departures from equilibrium) and ¢
and D are chosen to give U/Ue =], V=0 at the edge of the boundary layer (¢ = 1). So that

U
T
€ = 1 -Gy 58 [ln(UTRea) + 2,130,

D = (C~-1) tan B . N

The exponents X and x. are as given by Lock's (Reference 8) equation (132) and give improved rep~
resentation of profiles with large values of 8 . With this family of profiles all the integral thickness
ratios Gilé, eij/G can be expressed as functions of U1 N Re6 and B and no additional Hl(H) rela-

tionship and skin friction law are required. The dependent variables of the method are §, UT and B8 .

4.1.2.3 ONERA method

3,10-14

This uses the velocity profiles suggested by Le Balleur He replaces the wake functions Fo

and Pc of equation (5) with the single function
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F(L,C%) = PRl 5ol s
1 -t

where ¢* is a quasi-linear function of §&1/6 , based upon the computation of the 2D wixing layer, which
is non zero only for grossly separated flows (B > 90" )., The dependent variables of the method are § ,
51/5 and 62/6 . The entraimment coefficient, CE , 18 given by an analytic expression deduced from the

velocity profiles with a mixing length assumption, and is then based upon equilibrium flows properties.
At present, two transport integral equations (Reference 12) for non-equilibrium effects can be used only
in two-dimensional flows. Minor corrections are added to CE at low Reynolds number and low shape para-

meter. No additional H‘(H) relationship and skin friction lay are required.
4.1,2.4 ONERA/CERT method

Here following Cousteix (References 15 and 16) the relationships between the integral thicknesses
are obtained from an analysis of similarity solutions., These similarity solutions are constructed by
using a mixing length model which has been modified to ageount for the fact that the turbulent shear
stress is not aligned with the mean velocity gradient 3q/3z . These effects are represented by a
factor T where T = tan(ytr - y)/tan(yg - v); v, Y8 and YT are the directions of the velocity, the
velocity gradient and the turbulent shear stress respectively. T is a constant for a particular calcula-
tion, The dependent variables of the method are 81 92‘ and (6 - 6|) (or their equivalents in the

general x,y coordinste system). The entrainment coefficient is derived from the similarity sclutions
and once again no additional H](ﬂ) relationship or skin friction law are required.




4.1.,3 Numerical methods

All the integral methods of section 4.2 use the general, non-orthogonal coordinate system (x,y) on
the body surface. The results of inserting the assumptions detailed in section 4.2 into equations (1) to
(3) and then transforming to the x,y system may be written schematically in matrix form as

aF, f_l
—d = C. i,j = 8
Aij S+ Bij T C; (i, = 1,2,3) ®)

vhere Fj is the vector of unknowns (eg 6, H, 8 for Smith's method) and the Aij , B.,, and c; are

1]
functions of the unknowns, the geometry of the x,y system and the angle a ., The right-hand sides Ci

are in addition functions of the external velocity v, which is assumed to be known. For attached flows

the system (8) is hyperbolic and can be solved as an initial value problem by a marching procedure. The
bounding characteristics of these equations lie roughly in the directions of the external and surface
streamlines, ie inclined at angles o and a + B respectively to the x axis.

The numerical methods of Smith, RAE, and Gleyzes, OMERA/CERT, are similar in that both are explicit
and approximate the y derivatives of equation (8) by finite differences (backward if &« and a + B are
of the same sign, central if o and o + B are of opposite sign) and then integrate the resulting sys-
tems of ordinary differential equatioms with respect to x by standard methods (two step Euler, Smith;
fourth order Runge Kutta, Gleyzes). In both methods the x step is chosen to satisfy both accuracy and
stability (CFL) requirements.

Le Balleur et al, use the second order explicit MacCormack scheme, involving central differences
for the y derivatives, whichthey have found to be more robust than the above method. In addition once
either of the characteristic angles, o or a + 8 , become large x marching may become impossible and
Le Balleur has developed a "Multi-Zonal-Marching" method in which, where necessary, marching in boths x
and+ y directions is employed, reference 10.

Usually it is necessary to supply boundary conditions at the lateral (y) boundaries of the computa-~
tion if any fluid is entering the computational domain through these boundaries. In the case of the
ellipsoid, this is not necessary since the flow may either be considered to be periodic in y , or the
boundaries may be assumed to be planes of symmetry.
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4.2 Field methods

D.A. Humphreys, B. van den Berg and T. Cebeci

A non-orthogonal curvilinear coordinate system (x,y,z), useful for discussion pur—
poses., has been defined in section 4a.1 above. Before describing the individual programss
though, because one of them is based on rather u ventional ptions, it might be
appropriate to recall here a little of the background to the subject.

The system of boundary layer differential equations solved in field methods is a
subset of the exact Reynolds equations. The method of deriving the turbulent boundary
layer equations, although well supported by experimental evid . As arily heuri-
stic when the turbulence ie represented only by empirical formulae. For laminar flow
mathematically rigorous procedures can be applied and in that case lead to the same
wimplifications as given by the heuristic method.

The assence of the boundary layer concept is probably contained in the observation
that, with the very high Reynolds numbera fortunately prevailing in aircraft aerodyna-
mics, diffusion parallel toc the wall tangent plane 1s guite negligible and exactly zero
at the surface. The rigorous arguments indicate that after suitable normalising. and
supposing the Reynolds number to be large and the wall curvature to be small, the terms
which are less than order unity are dominated by terms of order either Ké or 43!, where X
stands for the maximum curvature of any local perpendicular section through the wall and
é is the local boundary layer thickness. The first order Prandtl equations consist of
the 0{1) terms alone and the second order equations retain the 0(KS) terms but reject
those of order &?: this imposes a consistency limit on the magnitude of the permitted
wall curvature'. Both sets of boundary layer squationa are parabolic and in steady flow
can be solved numsrically by space marching, given the requisite flow-defining initial
sl boundary data. In the second order theory the pressure variation normal to the wall
which is associated with the centrifugal force arising through wall curvaturs emesrges as
part of the boundary layer calculation, but in general this would not include the pres-
sure fleld caused by streamline curvature near separation from a flat wall nor that
induced for instance by longitudinal vorticity.

A thorough analysis of bogndnry layer calculation methods as such has recently been
carried out in another context®. It appesrs that modern methods are superficially very
similar and in order to differentiate clesrly ons from‘another it is an advantage to be
able to break them down into a series of logical ateps and compare how sach elemantary
task is treated. A similar procedurs was adopted in a geparats document’ prepared as a
standardised information source for the present chaper., This document, together with the
original references should be consulted {f a wmore complete prescriptrion of a calculation
aethod and its general capabilities are ght. Only tials will be repeated here,
concentrating on what was actually done to obtain the results appearing in this report.

There are five field methods to describe and, as in chapter 4a, the methods will be
referred to by the organisation where they were devisaed: AVA, Gdttingen; DAC, Long
Beach; FFA, Stockholm: MBB, Munchen, and NLR, Amsterdam. The MBB method solves the se-
cond order boundary layer eguations whereas the other four treat the usual first order
Prandtl equations. Two test configurations have been treated: the ellipsoid at 10° tnci-
dence, which aince the Mach number is only about 0.16 may be regarded as an incompress-
ible flow, and the NASA wing "C". All five methods were applied to the ellipsoid flow.
Only the DAC method was used for wing C and then the energy squation was solved in addi-~
tion to the compressible Prandtl equations. Towards the rear of the ellipsoid the boun-
dary layer thickness becomes quite appreciable in relation to the radius of the body
cross section and the question arises: should the metric coefficlents be allowed to vary
with distance from the wall as is usual with programs written for axi-~symmetric flow
over bodies of revolution? In the MBB method the variation was included, but neglected
in the others. The principal originator-references where general descriptions of the
?4eld methods can be found are AVA f[4), DAC [5, 6), PPA [7), MBB (8, ¢, 10] and
NLR ([11}.

The next b tion ns the turbulence mode's. Then follows a definition of
the prircipal numerical methods used for the computed results. Initial and boundary
conditions are reserved for the chapter discussing results, because they constitute the
flow definition for computational purposes and say little about the method. On the other
hand a note on computational effort, intimately connected with nume:ics, is appended to
the prasent chapter,
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4.2.1 Turbulence models

The turbulence models used were algebraic, all of mixing length or eddy viscosity
type. Por ordinary attached threedimensional turbulent boundary layers it is believed
that thg sophiaticated models which are sometimes proposed for practical calculation
methods*, while certainly implying gross increases in computer time, cannot in general
be relied upon to improve the quality of results obtained. However, it is equally cer-
tain that simple extensions to three dimensions of the algebraic models deaveloped from
obcory,txon. in undisturbed fully developed twodimensional flow are not generally ade-
quate’®. The flows under consideration here are at high enough Reynolds numbers for well
developed turbulence ta be expected but some of the other factors which could generate
first order modifications to the turbulence are

*2D%: longitudinal pressure gradient
longitudinal wall curvature
transverse wall curvature

"3D": streamline convergence
swirl
eddy viscosity anisotropy

Of these the influence of the pressure gradient was included in the AVA, DAC and NLR

methods, not in the other two. None of the remaining effects was modelled. The equations
used may be given as follows, assuming streamline coordinates.

AVA and DAC methods {Refs. 13, 5 and 2}

2 2
z <z, vg = 1‘1[(:—:) + (-g‘—z’) 1”2 (4b:1)
T € 22 Vg = c;rxax'n. {4b:2)
where
8 = %yz(1 - exp ~z*Ny/A *) (4b:3)
®, = 0.4 (4b:4)
z¥ = z/y (4b:5)
¥; = (1-11.8 p,*)i/2 (4b:6)
At = 26.0 (4b:7)
u,? = v /0 (4b:8)
+ vug, dugy
P - e—e——— (4b:9)
1 a3
a; = 0.0169 (4b:10)
7y = (1.0 + 6.5(z/8)*)"? (4b:11)
8,° = |13 (1- Ef) az| (4b:12)
Ue? = u? + v? {4b:13)

¢y, 18 the total wall shear stress and v is the kinematic viecosity esvaluated
a¥ the wall.




77A method [Refs. 14 and 7)

, due
:<scx "r"z'o'z_

. -
z, € X2 ve = agryda uy
where

8; = %yz{1 - exp -zt/a0t)
« = 1/80

8% = fp (1- g;; dz

MBB method [Ref. 15)

zZ < zg: ve = lz'.

. L)
2, € Z: vp w agrgpds u;
where

T2 = [1.0 + 5.5(0.32/z5,,)°)7}
8y° = 1.62,,

u; =W l!n(l,(u./H)'IC)

(4b:14)

(4b:18)

(4b:16)

(4b:17)

(4b:18)

(4b:19)

{4b:20)

(4b:21)
(4b:22)
(4b:23)

@ is the magnitude of the vorticity, W is the maximum value of the quantity toe/R,

(considered as a function of z) and z;,, is the location of its maxipum.

NLR method [Refs. 11 and 2]

,',1/2

: du,r  3Y
A1l =: vy 2153 *+ (5%
where
ty = %gz[1 ~ exp -z*N /At )T,y
Ry = 0.41
N, = (1 - 10 pt)1/2
- 24.5
* vag dug
Pyt
2 u" ax“

Ty = Tiny)
T(s) = n~* tanh
X2
n o ETTT'?;

(4b:24)

(4b:25)
{4b:26)
(4b:27)

(4b:28)
{4b:29)

(4b:30)
(4b:31)

{4b:32)

:K is taken in the direction of the wall shear stress vector and &y is the value of z
whe

re up = 0.95 ug.

L Ry




4.2.2 Numerical methods

The asymptotic discretisation errors of the calculation methods have the orders of mag-
nitude shown in Table 1.

Table 1 Orders of accuracy

Method x Y z
AVA 2 2 2
DAC 2 2 2
FFA 1 1 1
MBB 2 2 1
NLR b 1 2

As is well known, the orders of accuracy give a measure of how fast the local discreti-
sation error diminishes as the step length goes to zero and do not in themselves carry
any information on the size of the local error attached to any individual step length
taken in isolation. First order methods can therefore be more accurate in practice than
second order ones. It is usually an unfortunate fact that increasing the discretisation
error order also reduces stability. The difficult question of numerical stability will
not be tr ed, but some relevant discussion of it can be found in References 2 and 16,
for example.

As with the orders of accuracy, the integration algorithms are conveniently summa-
rised in tabular fors.

Table 2 Integration schemes

Method perpendicular tangential

AVA KB zz
DAC XB CB or SB
A ¢ LW
MBB ? ?
NMLR hé 4 DS or LS

The schemes represented in Table 2 have been abbreviated as follows.

IE = Implicit Euler (Refs 17 and 14)

KB = Keller box (Ref 18)

CB = Characteristic box (Ref 19)

D8 = Dwyer/Sanders (Refs 2 and 20)

LS = Laasonsn/Shevelev (Refs 2, 21 and 22)
LW = Lax/Wendroff type (Refs 23 and 7)

8B = Standard box (Ref 19)

ZZ = Zig-zag (Ref 24)

4.2.3 Computational grids and computing effort

In a comparison ofzgoundnry layer calculation methods carried out by Euroviec at the
Amsterdam Workshop“®, the required computational effort was deemed an important indica-
tor of program parformance. As puting p b cheaper this is a measure which
is receiving less phasis get b dary layer method developers, but nevertheless
remains of interest, not least to prospective users. The speed of the computer in appli-
cations depends on many factors samongst which may be mentioned the type of operation
being carried out and how the program being run is organised. The characteristic speed
can be expressed in units of million floating point operations per second {Mflops) and
is evaluated by computing standard problems with the same test program on the different
machines which are to be compared. It is, however, difficult to devise a test program
which is equally falir to all of the various machine architectures. In other words there
is a large uncertainty (say a factor of two) associated with the resulting characteri-
stic epeeds.

Table 3 19 in two parts. Pirst is shown the computers on which the calculation
methods were run, together with estimated characteristic machine performance figures for
scientific applications. The second part lists the sxscution time achieved for each
representative run and the computational grid to which this time relates. In the last
column is the Xffort defined as

Bffort = Mflops-time/nodes {4b:33)
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Table 3 Computationa] effort
Method Machine Speed Execution Grid points Total Effort
(Mflopse) |time (vec) d
x Yy z
AVA IBM 4381 0.88 ? 100 36 80 |180,000 ?
DAC CRAY XMP/2 24.0 80 ? ? (1] ? ?
A Cyber 170/730 0.22 1780 45 37 48 80,000 0.0048
MBB VAX 8600 0.84 1500 a1 81 81 1335,000 0.0038
NLR Cyber 180/855 2.0 34 40 36 20 29,000 0.0023

The figures for effort are all quite similar but the NLR method seeams to stand out and
1t is indeed true that when it was designed a decade ago computational efficiency was
made an important part of the specification. This is not so for the other methods in the
table, which are of more recent origin. However, it is an intgse-ting illustration of

inherent uncertainties involved that in the Rurovisc exercise®”, referred to above, the

corresponding Efforti obtained for the NLR method on a different computer was found to be

0.0052.
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CHAPTER 5. TEST CASE DATA BASE
5.1 Experimental
5.1.1 Description of the DFVLR prolate spheroid and its instrumentaticn
H.U.Meier and H.-PKreplin, DLR, Institut fiir Exp. Stromungsmechanik,
BunsenstraBe 10, D-3400 Gottingen, Federal Republic of Germany
INTRODUCTION

The wind tunnel model, especially designed for the investigation of three-dimensional
boundary layers essentially consists of a 1:6 prolate spheroid. This configuration was
chosen for the following reasons:

- the flow pattern around an inclined prolate spheroid is characteristic for
fuselages and missile shapes,

~ the geometry of this body of revolution can easily be described applying
orthogonal or non-orthogonal ccordinate systems,

- the potential flow is given - even for the inclined version - by closed anha-
lytical soiutions [1],

- the complete instrumentation like probe traversing mechanism, hot film ane-
mometers, pressure transducers etc. can be storaged in the model,

- as the model can be turned around its longitudinal axis, the pressure dis-
tribution, the wall shear stress, and the boundary layer guantities can be
measured in each cross section for arbitrary small steps of the circum-
ferential angle ¢ with the same surface pressure orifice, surface hot film
and boundary layer probe, respectively.

1. THE WIND TUNNEL MODEL

The essential construction of the ellipsoid is based on two half-shells of glass fiber
reinforced resin with a wall thickness of about 4 mm. The dimensions of the model are

given in Fig. 1, which shows the test arrangement in the 3m x 3m Low Speed Wind Tunnel
of the DFVLR-AVA.

The model can be turned around its longitudinal axis through ¢ = 0° to 360° with a re-
solution of 44 = 0.8° by means of a step motor. For one particular investigation in the
DFVLR 3m x 3m Low Speed Wind Tunnel a transition strip was mounted at x./2a = 0.2. The
strip was about 20 mm wide and consisted of carborundum (sand paper gra?n) with an ave-
rage diameter of 0.7 mm, which was blown onto liquid glue on the model surface (for
more details see Ref. [21).

The construction and manufacturing of a new prolate spheroid for the investigations in
the ONERA Fl pressurized wind tunnel, LeFauga, became necessary due to the seven times
higher maximum dynamic pressure in the Fl compared to the GOttingen facility. The ob-
jectives of the DFVLR-ONERA cooperation were to extend the detailed DFVLR investigations
on the prolate spheroid to much higher Reyrolds numbers.

2. WALL SHEAR STRESS MEASUREMENTS BY MEANS OF SURFACE HOT FILMS

For the present tests two prolate spheroids built for the DFVLR 3m x 3m Low Speed Wind
Tunnel (NWG) and for the ONERA Fl1 Wind Tunnel were equipped with 12 surface hot films.
The x,-positions of the flush mounted surface hot films differ only slightly on the two
modelg while the ¢-positions are completely different, see Fig. 2. The commercially
available surface hot film probes, see Fig. 3, were originally designed by McCroskey {3]
for the investigation of helicopter rotor blades. Each probe consists of two mutually
perpendicular films in V-configuration on a thin plastic foil. The dimensions of the

hot films are given in Fig. 3. Extreme care was taken to mount the hot films on the
model surface in order to avoid an imposed boundary layer transition caused by artificial
roughness. The measured imperfection of the model surface in the regime of the hot films
is smaller than 10 um. The films of the probes were operated simultaneously by 24 Con-
stant Temperature Anemometers developed and built at DFVLR, Gbttingen. These anemometers
were located inside the prolate spheroid in order to avoid very long probe cables in the
bridges. The overheat ratio of the films was adjusted to an operating film temperature
of about 120°C.

! block diagram of the electronic equipment and data acquisition system used for the
DFVLR and ONERA tests is given in Figs. 4 and 5, respectively. A detailed description of
the test set up and measuring procedure in the DFVLR 3m x 3m Low Speed Wind Tunnel is
given in Refs. (4], (5] and for the ONERA Fl1 facility in Refs. [6), [7].

Due to the V-configuration of the films the surface hot film probes can be used for the
measurement of the magnitude and direction of the local wall shear stress, Changes in
the local wall shear stress (magnitude and/or direction) result in changes of the local
hot film transfer, which is indicated by changes of the anemometer voltage E. The heat
transfer per unit temperature difference is used in the calibration and data reduction
procedure. This quantity is given by:




Q= with E = I RF

The average value for the free stream and wall temperatures was used as the reference
temperature T . While the hot film resistance R_ and temperature T_ are kept constant
by the anemomgﬁgr, the reference temperature in tge wind tunnel may ¢hange with time so
that the measured free stream and the model wall temperature correction are performed
automatically, which is sufficient for temperature changes of a few degrees as observed
in the experiments reported here.

According to Ref. [3] the wall shear stress magnitude Tw is derived from the sum of the
heat transfer rates of the films of each probe, Q. = Q1 + Q.. The measured values of QS
were related to calculated wall shear stress valués by the %ollowing procedure:

For zero angle of incidence the mean values of the hot film signals were measured at dif-
ferent Reynolds numbers (Re = U_ 2a/v_ ). These measured values were related to theoretical
wall shear stress values 1 _, calculated with a boundary layer computer program of J.C.
Rotta [8] for the given floWw conditions. The calculations were based on the measured
pressure distribution and the experimentally determined transition locations. The tran-
sition was clearly indicated by the drastic increase of the anemometer voltages and by
fluctuations in the hot film signals without a calibration of the probes. Only the la-
minar and fully turbulent boundary layers were considered for the calibration procedure,
because the transition region is not described correctly by the theory. The hot film
calibration curves obtained in this axissymmetric boundary layer flow were applied for
the evaluation of the local wall shear stress in three-dimensional boundary layer flows.
in order to be able to take small variations of the tunnel temperature into account, a
calibration of the surface hot films was performed before and after each wall shear
stress measurement at a given angle of incidence and free stream Reynolds number.

The directional sensitivity of the hot film probes could not be derived from a direct
calibration on the prolate sphercid. For this reason the calibration was carried out on
a flat tunnel wall in a two-dimensional turbulent boundary layer. As demonstrated in
Ref. {4)Ja linear relation between the yaw angle y_ 6 and the hot film output signals was
found for -40° s Y, S 40°., This linear relationship was applied to the surface hot film
prebes in the data reduction procedure.

The error bound for the magnitude of the wall shear stress depends on several parameters
like Reynolds number, temperature sensitivity (substrate), surface curvature, pressure
Sradient, and flow direction. For the reported tests the estimated accuracy of wall shear
stress measurements with respect to the magnitude is

tCe = 0.1|cf‘ .

2f course, the variations of the wall shear stess can be measured much more accurate
(within the order of 1 %). The determination of the wall shear stress direction mainly
Seperds on the deviation of the calibration curve from its linearity:

L& 0.1,7w,.

WALL PRESSURE MEASUREMENTS

The nmodel was equipped with 42 pressure taps positioned on one meridian in non-equidis-
rant distances, compare Fig. 6. Due to the fact that the model could be rotated around
:ts longitudinal axis in steps of 8¢ 2 0.8° a sufficient spatial resolution in circumfe-
rertial direction could be achieved.

Tre pregsure taps have a small diameter (d = 0.3 mm) in order to avoid any orifice
effects on the pressure measurement and to minimize the flow disturbance due to finite
reughness. The pressure taps were connected to a pressure scanner (Scanivalve) located
irsicde the model. For the experiments carried out in the G8ttingen wind tunnel (NWG)
trhe inteqration time for the pressure measurements was 2 seconds. The pressure inte-
sration started when the measured pressure value was indicated to be constant on an os-
¢.lloscope. It was checked that this test condition was reached after 1 second. This
resulted 16 8 necessary time for the measurement for all wall pressures on one meridian
t42) st & counstant circumferential angle ¢ of about 2 minutes. The corresponding pres-
eJri6 wele measured with a 1000 Pa pressure-transducer manufactured by Hottinger
(kLI/G,u1). The zero shift was detected before each run (¢ = const) and taken into
ecui,unt 1N the data reduction procedure. Apart from small temperature changes inside
the model, the zero shift of the pressure transducer was mainly caused by the change

«f the transducer position, if the model was rotated or inclined.

lictails about the test arrangement for the pressure measurements in the ONERA Fl Wind
lunhel ofre qiven in [6).

liwe pressure distributions were measured in the Reynolds number range of Re & 7 x 10%®
(LEVLR) to 4¢ v 1y® (UunPRA).
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pressure coefficient cp was defined as

P, - P,

c
P pU2/2

where P, - P, is the measured wall pressure minus the static pressure and p U2/2 is the

dynamic pressure, respectively (« denotes free-stream conditions). The static pressure

distribution and misalignment of the free jet in the DFVLR 3m x 3m Low Speed Wind Tunnel,

NWG, Gbttingen is given in Ref. [9]. The measuring accuracy relative to cp =1 is:

bey = 0.005, ONERA:  p, = 3.85 bar, U, =75 m/s and

A
°p

0.01, DFVLRs  p, = 1bar, U, = 55 m/s.

4. BOUNDARY LAYER MEASUREMENTS

The model is equipped with a traversing mechanism, which allows vertical and horizontal
movements of the probe. This traversing mechanism is installed inside the model in such
a way that the vertical movement relative to the model surface is warranted. The accu-
racy of the vertical displacement measurement is in the order of 1/100 mm and the hori-
zontal angle measurement is better than 0.4 degree.

The boundary layer measurements were carried out applying a Three-Hole-Direction-Probe
with an outer diameter of each single tube of d = 0.5 mm and a yaw angle of 45°, com-
pare Ref. [10). This probe allows the determination of the magnitude and the direction
of the local velocity. The directional sensitivity with respect to the angle of inci~
dence g and the yaw angle y was obtained in a two-dimensional channel flow of the DFVLR
Low Turbulence Wind Tunnel. This calibration was checked during the tests positioning
the probe in the free stream while the angle of incidence of the prolate spheroid was
zero. In Ref. [10] the directional sensitivity of the Three-Hole-Probe for yaw angles of
vy = + 30° and angles of incidence up to a = 10° is given. These results indicated that
the directional sensitivity is almost independent of the angle of incidence, as far as
they are representative for our test conditions. This is not true for the total pressure
measurement (p,). The uncorrected pressure difference p.,~-p., non-dimensionalized with
the dynamic pré&ssure, obtained at free-stream conditiong, ghanqes considerably as the
probe is inclined with respect to the tunnel axis to a = 10°. However, for a first appro-
ximation in the boundary layer, the streamlines are parallel to the model surface which
implies that the corrections can be assumed to be small. Due to the fact that during
this test no upwash angles were measured in the boundary layers, an "a~correction™ was
not applied in the data reduction procedure. At this stage of investigation the static
pressure was measured at the model surface and assumed to be constant through the en-
tire boundary layer thickness. Errors could have been revealed, here, if thick boundary
layers close to separation were investigated.

The data reduction procedure applied is described in Ref. (10].
Essentially, the resultant velocity can be derived by means of the Bernoulli equation,
while the cross-flow angle y is given by the pressure difference of the two "45 degree
tubes®. The measurement accuracy of the resultant velocity relative to the maximum ve-
locity is

su = 0.01

while the directional accuracy is better than

Ay = 1°

in the linear regime of the calibration curve. For wall distances of z < 1 mm probe dis-
placement effects have to be taken into account.
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Fig. 1: Prolate spheroid for the investigation of three-dimensional boundary layers
in the 3m x 3m Low Speed Wind Tunnel of the DFVLR, G8ttingen.

Length of the model 2a = 2.4 m
Diameter of the model 2b =0.4m
Maximum angle of incidence a = 30°

Maximum velocity U, =62 m/s
Turbulence level Tul = 0.3 %
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Fig. 2: Locatic~s of the surface hot film probes in different cross sections on the
prolate spheroid models used at the DFVLR (a) and ONERA (b) wind tunnels
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Fig. 5: Block diagram of the electronic equipment and data acquisition system
used in the ONERA Fl Wind Tunnel
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5.1.2 Lockheed/NASA-Ames Wing C

H. Yoshihara
Boeing Company
seattle, Washington

‘l'hg second case chosen by WG 10 is Wing C at M = 0.85, 5 degrees angle of attack, and Re. no. = 6.8 x
10%/mean chord. WVind tunnel measurements of the surface pressures and boundary layer velocity profiles
have been obtained by Keener (Refs. 1 and 2). In the following the definition of the wing, details of the
test, and the plots and tabulation of the test data taken from Refs. 1 and 2 are presented. In addition,
calculations wvith the Transonic Navier/Stokes (TNS) code (Ref. 3) are given to fllustrate the possible
test/theory mismatches that can be expected.

2.1 Details of the Test and Test Data

The tests vere carried out in the Ames 6 x 6 Foot tunnel which is a continuous flov facility having
slotted upper and lower surface walls of 6X porosity. Geometric properties of the model are summarized in
Pigure 1. The ving was defined in terms of the root and tip chords with the intermediate sections defined
by a linear development. The root and tip sections are shown in Pigure 2, and their coordinates are given
in Table 1. Since a definition of the wing tip was not provided, a shape as shown in Figure 1 vas
postulated. The wing was sounted on the tunnel sidewall directly as a semi-span model. Its semi-span of
0.9 meters resulted in a test-section blockage ratio of 1.3%. Details of the construction tolerances and
the aeroelastic properties are given in Ref. 1. Surface pressures were obtained by a transducer-
scanivalve system, vhile the boundary layer velocity profiles were obtained by a 3-hole "cobra head" flow
direction probe wvith the traversing mechanism mounted through the wing. The location of the surface
pressure taps and the velocity profile stations are shown in Pigure 3. The boundary layer was tripped
using sifted glass spherules located at the 4.5X chord station. The final determination of the trip
configuration vas determined using sublimation tests. On the lover surface and outboard of the 602 span
station on the upper surface the trip size wvas 0.16 am, vhile inboard of the 60X span station on the upper
surface the trip size vas 0.23 mm. PFluorescent oil flow pictures were also obtained.

The test data for M = 0.85 and 5% angle of attack are plotted in Figures 4 and 5 and tabulated in Tables 2
and 3.

2.2 ‘Ttransonic Navier/Stokes Solution

Calculation for the above case using the TNS code was carried out earlier (Ref. 3). The Baldvin/Lomax
equilibrium turbulence model vas employed, and an approximate symmetry condition was iaposed at the root
chord plane. The calculations were therefore repeated vith the exact symmetry condition implemented using
an image plane. In Figure 6 the resulting chordwise pressure distributions are compared to the earlier
Ref. 3 result and vith the experimental result. Comparison of the two calculated results shows that the
suctions are significantly higher vith the exact symmetry conditions in the upper surface peak and plateau
regions vwith a smaller increase of the suction plateau on the lower surface. These effects of the
symmetry condition extend over the entire span, such far-veaching influences being characteristic of high
subsonic flovs.

Surprisingly the less exact calculations agreed more closely vwith the experiments so far as the suction
peaks and plateaus vere concerned. A partial explanation for this is the distortion of the test data by
the significant boundary layer displ t effect on the sidevall on which the ving is mounted. Such
sidevall displacements vill be compressive about the wing leading edge, depressing the suctions in the
upper surface peak and plateau regions over the entire span in much the same manner as the inexact
symmetry conditions. In addition the consequences of the simplifications used in the diagonalization
process in the TNS code, particularly in the leading edge region, need to be assessed. The remaining
large test/theory mismatches, as at the 70X and 90X span stations, are most probably due to the inadequacy
of the turbulence model and to the inadequate treatment of the tip flow. Thus for example the difference
of the pressure distribution at the 70% station, namely the calculated single shock distribution compared
to the measured double-shock distribution, stems from the inboard displacement of the forward and rear
shock intersection by the inadequate turbulence model. The matter of the turbulence modeling, however,
falls outside the scope of the WG 10.

The above calculations were carried out by G. Blom and T. Blum of the Boeing Company.
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5.2 Thin-layer Navier-Stokes solution

Argyris G. Panarast, Joseph L. Steger}
t{NRC Senior Research Associate*
{Senior Staff Scientist, Fluid Dynamics Division
NASA Ames Research Center, Moffett Field, California 94035, U. S. A.

1. Introduction

The prolate spheroid is a body of simple geometry that can provide significant understanding of the complex flow
that can develop about slender bodies at incid A variety of wind tunnel tests have been carried out for a 6:1 prolate
spheroid at the DFVLR, at Gottingen, using a glass-fiber model of 4mm wall thickness and having major and minor axis
of 2.4m and 0.4m, respectively. The majority of the tests have been carried out at moderate Reynolds numbers but some
measurements have also been conducted in collaboration with ONERA, in France, at higher Reynolds numbers.

For the purposes of the Working Group No 10 of the Fluid Dynamics Panel of AGARD, the flow field surrounding
a 6:1 prolate spheroid was calculated at the NASA Ames Research Center. Two sets of flow ditions were studied,
a = 30°, U, = 75m/s, Re; = 43x10%, corresponding to conditions tested at ONERA, and the transitional flow case of
a = 10°, Up = 55m/s and Re; = 7.7x10°, which the members of the Working Group have used for the boundary-layet
calculations. For the calculation of the flow field the code F3D described in Ref. 1 has been used. The code solves a
conservative form of the thin-layer Navier-Stokes equations cast in generalized coordinates, so that it can be readily used
for computing flows about complex configurations.

Here the results of these calculations and comparisons with the available experimental data are given. The calculated
flow fields are similar to the ones obtained experimentally, characterized by the appearance of a pair of symmetrical vortices
at the leeward of the body, that originates along the lines of cross-flow separation. Similar computational results for these
cases were also recently published by Vatza et al. (Ref. 2).

2. Numerical method

The conservation equations of mass, momentum, and energy can be represented in a flux-vector form that is convenient
for numerical simulation as:

8.0+ 8(F+F)+08,(G+G)+8(B+H,)=0 (1)

where 7 is the time, and the independent spatial variables ¢,7, and { are chosen to map a curvilinear body-conforming
discretization into a uniform computa.tional space. In the system used in this study, £ denotes the curvilinear axis in the
direction of the main body axis, n denotes the circumferential and { the normal to the body direction. As opposed to the
inviscid flux terms F G and H the terms F,,G, and H are fluxes containing the viscons derivatives. A nondimensional
form of the equations is used throughout this work. Lengths are scaled by the length of the body, L, velocity components
by the free-stream velocity of sound, aco, the pressure and the total energy per unit volume, (€), by poo8eo?. The other
quantities, such as T, p, i are scaled by their free-stream values.

For body-conforming coordinates and high-Reyunolds ber flow the thin-layer approximation can be applied (Ref.
374)
8,Q + 8F +8,G + 8 H = Re'8,5 @

where only viscous terms in the normal to the body direction are retained. These have been collected into the vector § and
the nondimensional Reynolds number Re is factored from the viscous flux term. In the p t turbulent tati

the coefficients of viscosity appearing in the right-hand-side terms of Eq. (2) are obhlned from the model of dewm and
Lomax (Ref. 3).

In diffe;encing these equations it is advantageous to difference about a known base solution. If the base state is
properly chosen, the differenced quantities can have smaller and smoother variation and therefore less differencing etror.
If the free-stream is used as the base solution:

6:(Q — Qo) + 6¢(F — Fo) + 65(G - Guc)

e . ®
+ 6 — Bo)— Re™'8(5 - 50) =

where § indicates & general difference operator.

An implicit approximately-factored sch for the thin-layer, Navier-Stokes equations that uses central differencing

P

* Presently, Agias Elenis 63, Athens 15772, Greece
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in the 5 and ¢ directions and upwind differencing in the { direction can be written in the form:

(I + hGY(A*)" + h6,C™ — hRe™ 5. J ' M™J - Dy|]
x(I + h&{(A" )™ + k&, B" - D;|,]AQ" =
~ AHB(FH)" - FE) + 6{(Fy - F3) )
+8,(G" — Goo) + b (A™ — Hop) — Re™18(8™ - 50)}
- DA@" - Q)

where h = At or At/2 for first or second order time accuracy, and the free stream base solution is used. Here § is typically
a three-point, second-order-accurate, central difference operator, § is a midpoint operator used with the viscous terms,
and the opera.tors 65 and 5! are backward and forward three-point difference operators The fiux F has been split into

P+ and F-, a.ccotd.\ng to its eigenvalues (Ref. 5), and the matrices A* B, €, and M result from local linearization of the
fluxes about the previous time level. In Eq. (4), J denotes the Jacobian of the coordinate transformation. Dissipation
operators, D, and D;, are used in the central space differencing directions (Ref. 1).

The factored left-hand-side operators can be readily solved by sweeping in the ¢ direction and inverting tridiagonal
matrices with 5 x 5 blocks. This two-factor implicit scheme is readily vectorized in planes of £ = constant.

The grid was generated by solving a system of hyperbolic differential equations (Steger and Chaussee, Ref. 6). First,
a two-dimensional grid was generated in the symmetry plane. Then the three-dimensional grid was obtained by rotating
it about the major axis of the ellipse. The grid consists of 121 points along the direction of the main axis of the body,
100 around its circular section (no plane of symmetry) and 65 radially from the surface. For the various graphics, the
output file was reduced. The reduced grid is shown in figure 1. Each grid point (J, K, L) is defined by the Cartesian
coordinates x, y, z. The axial coordinate, x, is measured from the nose of the ellipsoid, the lateral coordinate, y, from the
vertical-longitudinal symmetry plane and the normal coordinate, 2, from the horizontal-longitudinal symmetry plane.

3. Calculated quantities
For the calculation of the skin friction the physical contravariant velocity components ,U*, V*, W*, were used.

The physical contravariant velocity components are related to the cartesian velocity components through the following
equations:

U* = (b, + véy +wls)y /22 +yf + 2]
V* = (un. + vny + wn,)y/22 +y3 + 23

W* = (uls + v(y + w(;)y /2 + 97 + 2} (5)

The vectors (£.,§y,§:) etc., are the components of the contravariant base vectors, while the vectors (z¢,ye, z¢) etc., are
the components of the covariant metrics. Equations (5) are valid for a curvilinear non-orthogonal system.

The components of the local skin-friction coefficient, along the streamwise and along the crosswise directions, were
timated by the equations:

1, 8U°
ce = E:(“T)"

1, 8v
Cfp = _(l" 8( Jw

As the skin friction is estimated near the wall, only the dynamic viscosity 4 was considered. Its value was estimated
by Sutherland’s formula. The velocity differences and the associated normal distance were estimated between the wall (L
= 1) and the first layer of grid points (L = 2).

4. Results
Morphology of the flow surrounding inclined bodies

It is known that the flow field surrounding bodies at incidence is characterized by the appearance of a leeward-side
vortex structure. The morphology of the vortical structure is similar for a variaty of shapes of bodies. This topic has been
covered in detail by Tobak and Peake (Ref. 7) and by Perry, Chong and Hornung (Ref. 8). In a croes-section of such a
flow, under the action of circumferential pressure gradient, the outer flow approaching the windward plane of symmetry
turns and flows outwards along the body, from the windward toward the leeward side. The boundary lnyex which is
formed in this way, separates from the body at a point on the leeward side that d ds on the st ition of
the cross-section and on the flow conditions. Then the fluid leaves the body along a feedmg sheet and rolls up to form a
primary vortex system on the leeward side of the body. The pair of the primary vortices induces a flow toward the body
surface, which at the point of attach t turns outwards toward the windward side. For primary vortices of sufficient
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strength, a dary tion is induced to the boundary layer below them. Thus the dary vortex structure may

P

, that rotates in an ite direction than the primary one. Both the systems are carried donwstream by the axial

L o

PP

component of the flow.

Experimentally, the vortex structures may be detected by particle trace techni (eg. ke), truction of
velocity measurements, or more simply, by using surface oil-flow techuiques. The lmu that are formed on a surface by the
oil correspond to the surface skin-friction lines. These lines converge toward the primary and the secondary separation lines
and diverge from the attachment line, that lies bet them. Computationally, the equivalent of the surface shear-stress
lines visualized in oil-flow experiments is simulated by releasing particles at selected grid points on the first layer of points
above the body. The particles move with the local fluid velocity, but are constrained to the plane just above the body, i.e,
the normal velocity component is set to zero in the time integration.

Comparison of the results with experiments, a = 30°

The measurements at ONERA included surface-pressure and skin friction distribution, together with oil-flow visualisa-
tion. The more detailed tests performed at Gottingen at a Reynolds number equal to 8.52x10° also include measurements
of the velocity components in the flow field (Ref. 9). The experimental results indicated that in both cases the flow
developed similarly to the typical case described in the previous section. At this time the ONERA experimental data have
not been published. However, Meier (private communication) has provided the distribution of the pressure coefficient and
some other information.

Flow-field results of the calculations are shown in figures 2, 3. The existence of the vortex structure and its outer
extent at midlength of the body is indicated by the velocity-vectors plot (figure 2). The primary and secondary vortex
structures are detected in figure 3, where surface particle traces are used to simulate the surface shear-stress lines visualized
in oil-flow experiments. In this figure the experimental oil-flow pictures included in Ref- 10 are also shown, in top and side
view. It is observed that the computed particle traces show relatively good agr t with the experiments. The extent
of the crossflow separation, indicated by the primary separation line, is very similar in both cases, with the exception of a
small region near the sting. There the separation is more extensive for the calculated results {inadvertent use of & thinner
sting in the computations may account for some of this discrepancy). Also, the coincid of the dary crossfl
separation lines is remarkable. In both cases they run along the azimuthal line of 30° from the leeward symmetry plane.

3

Computed surface-pressure coefficients at windward (¢ = 0°) and leeward (¢ = 180°) pl of sy try are
with the experimental data in figure 4. The agreement with the experimental results on the windward side, is good. T!us
was expected, because the windward boundary layer remains attached almost over the entire length (near the sting there
are again some differences). The computed and experimental pressure distributions are also in good agreement on the
leeward plane of symmetry. A small difference is observed between x/L = 0.2 - 0.4. It is noted that while in the experiments
the flow was transitional at part of the nose, in the calculations it has been assumed that the flow starts as a turbulent
one.

In order to verify the quality of the numerical solution away from the symmetry planes, the computed and the
experimental pressure coeflicients are compared along the circumferential direction, ¢, in figure 5, at three axial locations.
The agreement is good, not only on the windward but also on the leeward side. The suction observed at ¢ = 160°, on the
two upper curves, is due to the secondary vortex.

The computed shear stress angle, v, along the wall, is shown in figure 6, at the same axial locations that were used in
the case of the pressure coefficient. The experimental data have not bcen releued as yet, 80 a comparison is not possible.
However the good agreement of the oil-flow simulation with the experiments indicates that the predicted vy angles may be
not very different from the experimentally found values.

Effect of turbulence model and of grid refinement

Both the turbulence modeling and grid resolution can affect the output of the calculations and must be assessed. In
the present paper, the calculations were started with a grid consisting of 93x72x47 points and then they continued with &
grid of 121x100x65 points.

I~ the case of the turbulent modeling, the turbulent viscosity coeflicient 4 was computed using the two-layer, Cebeci-
type, cigebraic eddy-viscosity model reported by Baldwin and Lomax (Ref. 3). In both layers, 41, depends on the absolute
value of the local vorticity vector, w, and on the distance from the wall, y. More specifically, in the outer layer the turbulent
viscosity coeflicient is proportional to the maximum value of the function:

+
F(y) = wly{t - ™53 ™
and to the value of y at which this maximum occurs, ymes-

Deguu and Schiff (Ref. 11) observed that the evaluation of ymes is not otrughtforwud in cases of bodies with
tion. Indeed, while in the windward side the attached boundary layer gives rise to a profile of F(y) which
bhass dngle maximum, in the leeward side a second maximum, of greater value, app This d maximum is due to

the overlying vortical structure. Thus, if in the code, the t h 1 along each ray to determine the peak
of F(y), it will select the second maximum. The resulting value of p will be much higher than the one of the boundary
layer. This will cause an underestimation of the extent of the ofl paration and, quently, of the sise of the
vortical structures.
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For elimi g the f tioned difficulty, Degani and Schiff modified the turbulence subroutine, in their code, so
that the first pea.k of F(y) is selected at each profile. In the p t calculati initially the low was estimated without
the modxﬁcahon suggested by Degani and Schiff. Then after revnewmg the proﬁ.lea of the function F(y) around the prolate

pheroid, a cut-off dist was defined, that divides the boundary layer and the vortical structures. This is evident in
figure 7, where profiles of F(y) are -hovm at some typical points of the body. It is observed in this figure that the maxima
of the boundary-layer vorticity distributions lie below the value L = 22, in all the stations. Thus, if the outward search
stops at this cut-off distance only the first peak will be selected and not the one which is due to the vortical structures.
After this principle was applied for the evaluation of the turbulent viscosity coefficient, the profiles of F(y) were plotted
again, and checked as to whether the value L = 22 was still appropriate. No significant change has been noticed.

The above observation helps, also, in defining the edge of the boundary layer. It is evident, in figure 7, that the
vorticity function F(y), after it takes its local maximum value at the boundary layer, it falls rapidly towards a minimum
value and then it starts again to rise, at the leeward side, where the vortices are present. At the windward side, where the
boundary layer is attached, only one maximum appears and then the F(y) falls to zero. So in general the function F(y)
indicates rather clearly the position of the edge of the boundary layer.

Although a systematic study of grid-refinement and variation of the turbulence model was not carried out, computed
surface streamline patterns are shown in figure 8, for a coarse grid(8a), a fine one with the standard turbul del(8b),
and a fine one with the improved turbulence model(8c). For a better comparison, an unwrapped coordinate system is
used. Note that in this kind of graphics the pictures are distorted, because the vertical absissa takes the same value at
the position of the maximum diameter and at the position of the stirg or the nose. A comparison shows that as far as
the primary separation line is concerned, the three calculations show essentially the same results. However, things are
completely different in the case of the secondary separation line. In the coarse-grid calculation, this line does not appear
at all. In the fine-grid calculations with the dified turbulence model, an attachment region has been formed between
the primary separation line and the symmetry plane. In the final calculations, after the improvement of the turbulence
model, the secondary separation line appears very clearly.

Finally, the circumferential variation of the pressure coefficient at the location x/L = 0.81 is shown in figure 9 for the
three calculati The experimental data are also included. The gradual improvement of the predicted results is evident
in this figure, also.

Comparison of the results with experiments, o = 10°

The experiments for the @ = 10° case were conducted at the DFVLR. The Reynolds number based on the major axis
of the ellipsoid was 7.7 x 10°. The tunnel velocity was 55m/s. Transition was imposed at 20% of the major axis from
the nose, by a circumferential strip of carborundum powder. The tests indicated a fully turbulent boundary layer next to
the transition strip. Meier (ref. 10) has given the experimentally obtained surface shear-stress and flow inclination data.
Velocity profiles at various stations are included in Ref. 12.

For the calculation it was assumed that the flow was laminar up to x/L = 0.20 At this point an instantaneous transition
to turbulent flow was imposed. Surface particle-traces of the computed solution are shown in figure 10. It is observed
that the cross-flow separation is imited, compared to the 30°-case. Also no secondary vortex structure appears, evidently
because the strength of the primary vortex is not sufficiently strong to induce it. The experimental oil-flow results are not
available. However, the crossflow angle, 4, is known. The calculated crossflow angle and the experimentally found values
are shown in figure 11, at various cross-sections. Like the pressure distribution, the crossflow angle, v, is much easier to
accurately predict than the skin friction.

The computed skin-friction coefficient distribution, in the circumferential direction at three axial etations, is compared
with the experimental data in figure 12a. The range of the y* parameter of the flow, on the first layer of points above the
surface of the body was y+ = 0.5-0.9. The agr t of the predicted dats with the experimental values is quite good.
Shown in figure 12b is a general coordinate boundary layer result (Ref. 13) , in which edge conditions were taken from the
Navier Stokes result at approximately 30mm above the wall. The boundary layer code uses central differencing without
added numerical dissipation in the direction away from the wall, and it is used to verify the Navier-Stokes predicted values
of skin friction. Previously obtained Navier-Stokes results using more numerical smoothing and a coarser grid produced
different level of Cy, while the boundary layer code was not itive to those changes, even though it used the different
Navier-Stokes inputs.

Velocity profiles, on the symmetry plane at x/L = 0.65 and 0.74, are pared with the experiments in figure 13a.
The agreement on the windward side is better than on the leeward side, where the measured profiles are fuller in their
lower part than the predicted ones. For parison, the puted boundary layer profiles of Ref. 13 are shown in figure
13b.

In first-order-of-magnitude boundary-layer methods the assumption is made that the pressure is constant across a
boundary layer. To check this assumption for the particular prolate spheroid flows that are reported in the present paper,

the wall p in the circumferential direction (x/L = 0.74) is compared in figure 14 with the pressure at a normal
distaace from the wall. This distance is of the order of the i thickness of the boundary layer (30mm). It is seen,
in figure 14, that the p is nearly tant within the boundary layer, in both the 10° and 30° case. A small gradient

appears only in the 30° case at the region of maximum acceleration of the cross flow.
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Fig. 1. Schematic view of the grid. Only a few lines are shown.

Fig. 2. The calculated flow field. Crossflow velocity vectors at x/L=

0.50.
Re; = 43x108, a = 30°.
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CHAPTER 6. RESULTS

To investigate the accuracy of predicting three-dimensional flows by solving the
boundary-layer equations with field and integral methods, two test cases have been con-
sidered as a result of the discussions of Chapter S. The first corresponds to the pro-
late spheroid discussed in Chapter 5 and examined experimentally in the 3 m x 3 m wind
tunnel of the DFVLR in Gdttingen. Measurements of wall shear and velocity profiles were
obtained at four streamwise stations. x/2a = 0.48., 0.56, 0.64 and 0.73 for an angle of
attack of a = 10°, The measured distributions of the wall pressure coefficient provide
a basis for determining the external velocity boundary condition required in the solution
of the boundary-layer equations. An alternative approach to this boundary condition is
to make use of the measured external velocity values but these are not provided in suf-
ficient detail so that other means require investigation.

The uncertainties associated with the specification of the external velocity dis-
tribution have been investigated with results shown in Fig. 1. These results correspond
to the velocity components ug/u, and wWe/U, at x/2a-stations of 0.48 and 0.73 obtained by
the solution of the inviscid flow equations with the surface pressure measurements com-
puted by Stock, and from the measurements of Meier and Kreplin. It is clear that the
results of the inviscid flow theory are usually higher than those computed from the wall
pressure distribution and considerably higher than those measured at the edge of the
boundary layer. One possibility for these discrepancies may be the pressure variation
across the boundary layer, but this cannot be entirely true since the difference in vel-
ocities also appears in areas where the boundary layer is thin and laminar, for example,
near the nose. Another possibility may be that the flowfield in the open test sgection
is deflected by the presence of the body because it imposes lift and consequently dis-
torts the pressure distribution. 1In the light of these uncertainties, the Working Group
defined a standard test case, at 10° incidence, which used the external flow data as
derived from the wall pressure distribution by Stock.

In general the velocities calculated from the wall pressure distribution by Stock
are lower than thogse calculated from the potential flow but the difference is only a few
percent for ¢ < 120°. For ¢ > 120°, however, the picture changes: the circumferential
velocity component Wg/u, calculated from the surface pressures is higher than that given
by inviscid-flow theory and the shape of the resulting distribution is considerably dif-
ferent from that given either by inviscid flow or that obtained by measurements at the
boundary-layer edge. The result of these differences is, as shown in more detail below,
that if the boundary-layer calculations are performed for the external velocity
components deduced from the surface pressures, they are in good agreement with those
computed by the inviscid input data so long as ¢ is less thanm 120°. For ¢ > 120° the
results differ and, perhaps fortuitously, the inviscid data give closer agreement with
experiment.

The second test case corresponds to the Lockheed/NASA Ames C-wing for which there
is experimental data obtained in the NASA Ames 6' x 6' transonic/supersonic wind tunnel
with a semi-span model for a Mach number range of M, = 0.25 to 0.95 (1,2]). There are two
series of tests, one for the measurement of surface pressures with transition free and
the other for boundary-layer measurements with transition fixed at x/c = 0.045 on both
upper and lower surfaces. The boundary layers were measured only at two chordwise loca-
tions corresponding to x/c = 0.218 and 0.421 at the mid-semi-span location.

In contrast to the first test case, which has been examined by all of the boundary-
layer calculation procedures of Chapter 4 and by the Navier-Stokes method of Chapter 5,
the second test case has been calculated only by the Navier-Stokes method described in
Chapter 5 and by the interactive boundary-layer method described later in this chapter.
As a conseguence, the problem of the specification of the external boundary condition
described above in connection with the first test case does not arise.

The next two sections are concerned with integral and field methods. In Section
6.1, the emphasis is on the prolate spheroid at a = 10° with some results for the higher
angle a = 30°, Section 6.2 presents results for the two test cases referred to above and
provides a brief description of the interactive procedure.

6.1 Integral methods

P.D. Smith, RAE, Parnborough, Hants, UK

6.1.1 The ellipsoid at 10° incidence

This is the only test case to which the integral methods described in Chapter 4 have been applied.
For each method results are shown for the standard test case using the external flow data given by Stock
together with some examples of the attempts which have been made to improve the agreement between calcula-
tion and experiment.

Por the RAE method, Smith has produced results both for the basic method and for the method using
Cross's velocity profiles. The use of the more sophisticated velocity profiles produces a small improve-
ment in the results but large differences between calculation and experiment remain on the leeward side
(¢ » 120° say) of the body.




For the ONERA/CERT method, Gleyzes notes that the external flow directions are given by Stock do
not agree with the measurements particularly over the rear leeward side of the body. Gleyzes has, there-
fore, recalculated the external flow by matching it to the experimental data at x,/2a = 0.48 ., As will be
seen from the figures this improves the agreement between experiment and calculatidn but significant
uifferences remain,

For the ONERA method, Le Balleur and Lazareff have calculated both the standard test case and one
in which the external flow is assumed to be the inviscid potential flow which would be present in the
absence of all viscous effects., This second calculation improves the agreement with experiment and under~
lines the unexpected sensitivity of the predictions to the distribution of the external flow angle. This
type of calculation has also been made by both Smith and Gleyzes.

As will be geen from the figures all of the methods produce results of a similar quality and for the
standard test case they agree well with experiment over the windward side of the body but on the leeward
side they agree more closely with each other than they do with experiment.
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6.2 Field methods

T. Cebeci, Douglas Aircraft, CA, USA

6.2.1 The ellipsoid at 10° incidence

The calculations for this test case were performed by Cebeci ([DAC], Hirschel and
Monnoyer [MBB), Humphreys (FAA)}, Menter [DFVLR], and van den Berg et al. [NLR) using the

boundary-layer procedures of Chapter 4b with external velocity distributions which will
be indicated.

The results obtained by Cebeci are described in detail in [3] and made use of the
external boundary condition determined from the solution of inviscid flow equations. The
distributions of momentum and displacement thickness show similar trends to those of
Section 6.1 where., in general. the external boundary conditions determined by Stock were
used, but hg:e particularly for ¢ greater than 120° the calculations are in much better
ag:eement with measurements. There is a tendency, for angles of 120°, for the calcula-
tions to underpredict at low values of x/2a and to overpredict at the furthest downstream
§tation. This is probably due to the external velocity boundary condition, as describead
in [3] and discussed above in relation to Fig. 1. The skin-friction results display the

experimental trends and are within 15% of the measured values with some unde:predicti?n
in regions which are consistent with the experimental pressure distribution as argued in
{3]. The flow angles show even better agreement except, again, in the downstream region
where the boundary conditions are subject to uncertainty.

The resultg obtained by Hirschel and Monnoyer [MBB] made useof the inviscid eyternal
velocity distribution and a brief description of the method and the results provided by
Monnoyer are given below.

The calculations were performed on the 1:6 ellipsoid at 10° incidence. The Reynolds
number based on the ellipsoid major axis was 7,700,000 and the freestream Mach number
0.17. Transition was tripped at x/2a = 0.2.

The mesh had 89 nodes in the axis direction, 61 points equally spaced in the crose-
flow direction (half body), and S1 across the boundary layer. The initial profiles were
computed at x/2a = 0.0013, and the calculation was laminar until x/2a = 0.2; intermit-
tency was applied until x/2a = 0.225, where the flow became fully turbulent. The outer
flowfield was obtained from the potential flow solution, and no displacement effect was
applied to the inviscid part of the flow.

Results of the calculation neglecting (MBB-1) and including (MBB-2) the effect of
surface curvature are compared with experiment. The circumferential distributions of the
pseudo two-dimensional displacement thicknesses, the flow angles at the wall and the
skin-friction coefficients are plotted at four stations. 1In addition, the wall pressure
distribution is provided. The comparison of both calculations shows that curvature plays
a role on the boundary-layer flow as the boundary-layer thickness incteases, namely on
the leeside region. Since the velocity profiles at the vicinity of the wall are only
marginally modified, no significant changes are to be seen on the skin friction and the
wall flow direction, although there is a trend towards the measured values. On the other
hand, the effect of curvature on the metric coefficients away from the wall largely
affects the solution at the outer part of the boundary layer as illustrated by the dis-
placement thicknesses.

Concerning the comparison with experiment., only wall flow angles Yy agree satisfac-
torily, except on the leeside at the last station where it is clear that the analytical
potential flow solution does not hold anymore. It is interesting to note that much bet-
ter agreement between the calculated and measured values is obtained if the latter are
slightly “translated" as follows: the flow angles at each station are shifted so that
the symmetry condition (yy = 0) at the leeside is satisfied leading to shiftings not
larger than 0.7°; the skin-friction coefficiente are translated downwards by a constant
value of Acg = 0.00025, 1inm order to fit them with the computed ones; a shift Acp = 0.025
is applied to the measured pressure Bo that better agreement with the potenEIaI fiow
golution is obtained, especially on the windward side. It is indeed surprising that
discrepancies are smaller at the leeside where it ig expected that the deviation of the
actual pressure distribution from the theoretical inviscid pressure should be larger than
at the windward side.

The results obtained by Humphreys made use of the experimental pressure distribution
as extracted by Stock. They show increasing deviations from the measurements as the
circumferential angle increases beyond 120° with some discontinuities which may stem from
the details of the numerical procedure.

Menter [DFVLR] has used a eecond-order accurate finite-difference method which is
based on the standard and the zig-zag box method ([4-5). He has performed four sets of
computations by using different boundary conditiocns at the boundary-layer edge. A des-
cription of the results provided by him is given below.

T
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For the first set, the boundary conditions were taken from potential flow theory.
Figure al shows the wall streamline angles and Fig. a2 the local displacement thickness
at four different x-stations. The computations are generally in good agreement with the
experiments except in a small region in the rear part of the body at ¢ ~ 140°. There a
discontinuous (weak) solution builds up in the direct mode computations. This discon-
tinuity is certainly a feature of the boundary-layer equations itself [6] when solved in
the direct mode and could not be removed by changing the grid resolution.

A second set of calculations has been performed by using the external velocity field
cornputed by Haase and Stock (7] on the basis of the experimental pressure distribution.
An improvement of the results could not be achieved, as can be seen in Figs. bl - b3.
The reasons are first that the computations are still performed in the direct mode 8o
that singularities in the solution are not excluded and second the computations of (7]
do not automatically fulfill the symmetry condition at the leeward line of symmetry.
leading to the unphysical behavior of the boundary-layer method.

The singular behavior can be avoided by using inverse boundary conditions as shown
by [8-9]. In the present case half inverse boundary conditions were used by specifying
first the length of the velocity vector at the boundary-layer edge from the experimental
wall pressure distribution via the Bernoulli equation and second the direction of the
wall streamline. This experimental input was used, because it can be measured quite
accurately. The direction of the external streamline was computed with a Newton itera-
tion. Figures cl - ¢3 show the results (remember that cl shows the input). One can see
that the discontinuity in the solution is avoided and that the results (Fig. a2) are in
good agreement with the measurements.

In order to avoid the need of an experimental input, first results were produced by
coupling the Euler and the boundary-layer equations. The boundary layer was simulated
with the wall transpiration approach [10] in the space-marching parabolized Euler solver.
The correction for the wall pressure was computed at the boundary-layer edge, defined as
follows:

(%— + %—) . % = 0.9 at y = 3§
e e

Figures d1 - d3 show the results of this viscous-inviscid interaction method. The
singularity in the solution is completely avoided., as was expected and the computations
are in much better agreement with the measurements than those of Figs. al - a3. It
should be noted that the major shortcoming of the viscous-inviscid interaction approach
is the arbitrariness in the definition of the boundary-layer edge (coupling location).
This problem can only be avoided by using parabolized or full Navier-Stokes methods
[11,12).

Calculations performed by J. I. van den Berg, Lindhout and B. van den Berg of NLR.
for the prolate spheroid at 10° angle of attack were carried out with BOLA, the NLR
calculation system for three-dimensional boundary layers. The calculations were started
at xg/2a = 0.30 with given initial viscous flow conditions. As a boundary condition
the surface pressure distribution was employed, the flow angle at the boundary-layer
edge being obtained from an integration of the Euler equations. A description of their
results provided by them is given below.

In a first report (13] grid dependence and the effect of changing the empirical
constants in the turbulence model were investigated. Refinement of the grid was found
to have little influence and the choice of slightly different constants in the turbulence
model did not lead to essentially different results. In a second report [14), the influ-
ence of initial data and boundary conditions on the calculation results was investigated.
Three calculations were performed subject to the following initial and boundary
conditions:

1. Measured pressure distribution: initial flow conditions at x,/2a = 0.30 from Cebeci
(based on boundary-layer calculations from the nose using the potential flow bound-
ary condition).

2. Potential flow pressure distribution: initial flow conditions at x,/2a = 0.30 from
Cebeci.

3. Measured pressure distributions; initial flow conditions at xg/2a = 0.30 from
Gleyzes (different edge stream angles, obtained by fitting calculations to available
measurement data at x,/2a = 0.48).

The first case represents the initial and boundary conditions as defined for this
test case by the Working Group.

The calculation results for the three cases and the experimental data at the sec-
tions xo/2a = 0.48, 0.56, 0.64 and 0.73 are plotted in a series of graphs appended.
Por the test case conditions defined by the Working Group (case 1), the calculation
results are seen to compare not well with experiment at the leeward side of the prolate
spheroid. The region of flow convergence is predicted essentially too close to the sym-
metry line. The calculations with the same initial conditions and the potential flow
pressure distribution (case 2) produce results in much better agreement with experiment,
though the digplacement thickness peak is substantially overestimated. Comparatively
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smooth results are obtained, probably because the initial and boundary conditions used
are smooth and compatible. Best overall agreement is obtained when the measured pressure
distribution is used together with initial edge flow angles derived indirectly from the
measurements (case 3).

It is concluded that the test case is dominated to a great exteant by the boundary
and initial conditions. More specifically boundary and initial conditions can probably
not be prescribed independently. The poor results for case 1 seem to be due to
prescribing the measured pressure distribution together with initial edge stream angles
from potential flow. The solution of the Euler equations downstream of the initial line
will lead then to an essentially wrong edge stream angle distribution.

The objective of the Working Group is to determine the limits of boundary-layer
calculation procedures in 3-D separation regions. The last figure shows the computed
boundary-layer thickness distribution at two sections in the rear part of the prolate
spheroid. No problems were encountered in performing the boundary-layer calculations,
but the large circumferential thickness variations indicate that the boundary-layer
approximation (comparatively large derivatives normal to the surface) does not hold
anymore and determines the limit here.

6.2.2 The C-wing

The calculations were performed at DAC by Kaups, Mehta and Cebeci [15] at the design
angle of attack of 5 degrees, at Mach numbers of 0.70, 0.82, 0.85 and 0.90 for a Reynolds
number of 6.8 x 106, The interactive boundary-layer approach, based on the strip-theory
approach to three-dimensional flow, has been described in {16) and incorporates viscous
effects into the inviscid flow through a surface-blowing boundary condition. Two
inviscid-flow procedures corresponding to a full-potential code (17] and an Euler code
were used in the calculations. The transonic potential code was used in nonconservative
form with a numerical grid of 161 x 25 x 33 mesh points and the Euler code 145 x 25 x 31
mesh points arranged in a C-grid in the streamwise and spanwise directions, in some cases
with an H-grid in the spanwise direction.

Figure 2 allows comparison of the measured and calculated results at Ma = 0.70. The
interactive calculations with the Euler code and H-grid spanwise, and with full poten-
tial code agree well with experimental data except near the leading edge where the flow
is supercritical. As expected, the calculated lift coefficients also agree well with
the normal force coefficient = 0.483 calculated from the measured pressure
distributions. It is evident that calculations with the Euler code and C-grid in both
directions reproduce the velocity peaks more accurately except near the wing tip where
the local lift is overpredicted over the whole chord. The results of Figure 3 correspond
to My = 0.82 and show attached flow with shocks. The interactive calculations with the
Euler code are closer to the measurements than those with the full-potential flow solu-
tions. The C-grid was used in both directions mainly to improve results near the wing
tip but it is clear that better agreement with experiments has resulted near the shock
location and over the whole wing apart from the wing tip where the lift tends to be over-
predicted, and caused the wing lift coefficient to exceed the measured normal force coef-
ticient Cy = 0.53., It should be noted that the predicted pressure recovery near the
trailing edge at the wing tip differs in all cases from the measured values indicating a
strong decambering effect in the experiment.

Pigure 4 shows results at the design condition at which flow visualization has shown
the flow in the outer 30 percent of the span to be separated due to strong shock-
boundary-layer interaction. The calculations are in good agreement with experiment
except in the region of the separation bubble, and the corresponding lift coefficient is
only slightly lower than the measured value of Cy of 0.54. It is surprising that the
results obtained by interaction with the full potential flow method are in better agree-
ment with those with the Euler method than the results of Figure 3. The pressure distri-
butions obtained at Mws = 0.9 and the full-potential code are again in reasonable agree-
ment with experiments on the inboard and middle portions of the wing, as shown in Figure
5; the predictions on the outboard portion of the wing show attached flow whereas the
experiments suggest separation because the predicted shock pressure rise is spread out
over a considerable distance. Despite this discrepancy. the predicted 1ift coefficient
is close to the measured normal force coefficient Cy of 0.56.
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INTERACTIVE CALCULATION WITH:
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Figure 2. Comparison of calcu!atedsand experimental chordwise pressure distributions for
M_=0.70, Re = 6.8 x 10°. (a) Euler with H-grid. (b) Euler with C-grid.
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Figure 3. Comparison of calculatedsand experimental chordwise pressure distributions for
M =10.82, Re = 6.8 x 10°. (a) Euler with H-grid. (b) Euler with C-grid.
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Figure 4. Comparison of calculatedsand experimental chordwise pressure distributions for
M = 0.85, Re = 6.8 x 10°.
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Figure 5. Comparison of ca]culatedsand experimental chordwise pressure distributions for
M_=0.90, Re = 6.8 x 10".




CHAPTER 7., CONCLUSIONS

The present study of the Working Group 10 was confined to turbulent flows using

both the field and integral boundary layer equations. Two test cases were selected for
numerical simulation, i.e. the DFVLR prolate spheroid and the NASA-Ames Wing C.

In order to give a brief summary of the results achieved some concluding remarks

are listed below as stated by the various WG members:

For the 10° prolate spheroid case, the boundary layer equations are valid, except in
the regions of strong convergence of the wall streamlines.

The 10o case is very sensitive to azimuthal distribution of the given external flow.
Problems of definition of external flow lead to lack of agreement with experiment at 10°.
Results very much dependent of edge conditions even at 10°,

Boundary layer results for 30° agree better with Navier-sStokes results, perhaps because
edge conditions and integral guantities are coherent {which is not evident for 10°).

Wing C complicated by interference from root.
3-D boundary layer assumptiors are very sensitive to external flow angles.

Apply boundary layer theory only where it is valid, strong and global interaction should
be handled by coupling approaches.

For attached flow or for flow with mild cross flow separation, the viscous-inviscid
interaction method is accurate and efficient and well suited for the design process.
This is true for integral as well as for field methods.

It seems that boundary layer calculations can go fairly far if proper boundary con-
ditions are introduced.

The initial aim was too ambitious.

From the last remark one can easy recommend a follow-up Working Group which would

be useful if viscous/inviscid interaction methods are available. Furthermore, it is re-
commended to work on basic feature of turbulent flow such as transition and turbulence
modelling.

S T
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Appendix
NLR CALCULATIONS

J.I.van den Berg, J.PF.Lindhout and B. van den Berg, National Aerospace Laboratory.
NLR, Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands

Calculations have been performed for one test case: The prolate spheroid at 10° angle of attack. The
calculations have been carried out with BOLA, the NLR calculation system for three-dimensional boundary
layers. The calculations were started at x /2a = 0.30 with given initial viscous flow conditions. As a
boundary condition the surface pressure distributton was employed, the flow angle at the boundary layer
edge being obtained from an integration of the Euler equations.

In & first report (J.I. van den Berg et al, 1987) grid dependence and the effect of changing the
empirical constants in the turbulence model were investigated. Refinement of the grid was found to have
little influence and the choice of slightly different constants in the turbulence model did not lead to
essentially different results. In & second report (J.1. van den Berg et al, 1988) the influence of initial
data and boundary conditions on the calculation results was investigated. Three calculations were performed
and the results of these will be given in this appendix. The initial and boundary conditions for the three
cases are:

1) Measured pressure distribution; initial flow conditions at xo/Za = 0,30 from Cebeci {(based on
boundary layer calculations from the nose using the potential flow boundary conditiom),

2) Potential flow pressure distribution; initial flow conditions at xo/2a = 0,30 from Cebeci.

3) Measured pressure distribution; initial flow conditions at x f2a = 0.30 from Gleyzes (different edge
stream angles, obtained by fitting calculations to available measurement data at x°/2a = 0.48).

The first case represents the initial and boundary conditions as defined for this test case by the Working
Group.

The calculation results for the three cases and the experimental data at the sections x /2a = 0.48,
0.56, 0.64 and 0.73 are plotted in a series of graphs appended. For the test case conditions detined by the
Working Group (case l), the calculation results are seen to compare not well with experiment at the leeward
side of the prolate spheroid. The region of flow convergence is predicted essentially too close to the
symmetry line. The calculations with the same 1initisl conditions and the potential flow preassure
distribution (case 2) produce results in much better agreement with experiment, though the displacement
thickness peak 1s substamtially overestimated. Comparatively smooth results are obtained, probably because
the initial and boundary conditions used are smooth and compatible. Best overall agreement i{s obtained when
the measured pressure distribution 1s used together with initial edge flow angles derived indirectly from
the measurements (case 3).

It 18 concluded that the test case is dominated to a great extent by the boundary and initial
conditions. More specifically boundary and initial conditions can probably not be prescribed independently.
The poor results for case 1 seem to be due to prescribing the measured pressure distribution together with
initial edge stream angles from potential flow. The solution of the Euler equations downstream of the
inftial line will lead then to an essentlally wrong edge stream angle distribution.

The objective of the Working Group is to determine the 1limits of boundary layer calculation
procedures in 3D separation reglons. The last figure shows the computed boundary layer thickness
distribution at two sections in the rear part of the prolate spheroid. No problems were encountered in
performing the boundary layer calculations, but the large circumferential thickness variations indicate
that the boundary layer approximation (comparatively large derivatives normal to the surface) does not hold
anymore and determines the limit here,
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1. Berg, J.I. van den, Lindhout, J.P.F., Berg, B. van den, 1987. "Calculation of the boundary layer
around an ellipsoid at 10° angle of attack". NLR MP 87026 U.

2, Berg, J.I. van den, Lindhout, J.P.P., Berg, B. van den, 1988."Comparison of calculations of the boun-
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